Realisation (metrology)

Last updated

In metrology, the realisation of a unit of measure is the conversion of its definition into reality. [1]

Contents

An example of the concept of realisation, is the unit of length, the meter. The metre was originally defined in 1791 as one ten-millionth of the distance from the equator to the North Pole along a great circle. To actually measure a length, this definition must be converted into a physical tool, which can be used to complete the measurement. The meter stick is the realisation of the meter.

The International Bureau of Weights and Measures maintains the techniques for realisation of the base units in the International System of Units (SI), all seven of which are defined in terms of natural physical constants, rather than human artefacts such as the standard kilogram. [2] [3] Following the 2019 revision of the SI all fundamental units of metrology are now defined in terms of natural physical constants, rather than human artefacts. The realization of these units is also defined by a published "Practice for the Realization of the Unit", for each unit. This is a detailed set of technical instructions for the construction of a device that will produce a practical realization of each unit. Any competant person, who follows these instructions can realize any unit.

For example the metre is defined as 1/299792458 of the distance light travles in one second. The Practice for the Realization of the Metre describes how to build an apparatus to determine this distance. Using this aparatus it is possible to construct a metre stick which is the realization of the metre. [4]


The International vocabulary of metrology identifies three distinct methods of realisation:

  1. Realisation of a measurement unit from its definition.
  2. Reproduction of measurement standards.
  3. Adopting a particular artefact as a standard.. [5]

Overview

The Oxford English Dictionary defines the word "realise" (also spelt "realize") as "to convert (something imagined, planned, etc.) into real existence or fact". [1] The International vocabulary of metrology identifies three distinct ways in which this is done – the first being the realisation of a measurement unit from its definition, the second the reproduction of measurement standards and the third the process of actually adopting a particular artefact as a standard. [6]

Techniques

Time

The realisation of time has gone through three phases. During both the first and second phases, man used solar time – during the first phase, realisation of time was by observing the Earth's rotation using such devices as the sundial or astrolabe. During the second phase actual timing devices such as hourglasses or clocks were used. If the user needed to know time-of-day rather than elapsed time, clocks were synchronised with astronomical time. The third phase made use of clocks that were sufficiently accurate that they could measure variations in the Earth's rotation – such clocks taking over from the rotation of the earth as the prime measure of time.

Direct measurement of solar time

Timekeepers

  • Accuracy of clocks

Time generators

  • Radiation frequency and SI

Length

Units of length, along with mass (or weight) and time, are one of the earliest quantities that was measured by man. Historically two distinct approaches were used – one was to use a naturally occurring phenomenon such as a particular seed or part of the human body, the other was to use a standard length that was held by a community leader.

An example of a modern realisation is the realisation of the metre in terms of optical frequency standards. [7]

Volume

Mass

Electric charge

Temperature

Photometry

Amount of substance

Related Research Articles

International Atomic Time is a high-precision atomic coordinate time standard based on the notional passage of proper time on Earth's geoid. TAI is a weighted average of the time kept by over 450 atomic clocks in over 80 national laboratories worldwide. It is a continuous scale of time, without leap seconds, and it is the principal realisation of Terrestrial Time. It is the basis for Coordinated Universal Time (UTC), which is used for civil timekeeping all over the Earth's surface and which has leap seconds.

<span class="mw-page-title-main">Ampere</span> SI base unit of electric current

The ampere, often shortened to amp, is the unit of electric current in the International System of Units (SI). One ampere is equal to 1 coulomb (C) moving past a point per second. It is named after French mathematician and physicist André-Marie Ampère (1775–1836), considered the father of electromagnetism along with Danish physicist Hans Christian Ørsted.

<span class="mw-page-title-main">Kilogram</span> Metric unit of mass

The kilogram is the base unit of mass in the International System of Units (SI), having the unit symbol kg. 'Kilogram' means 'one thousand grams' and is colloquially abbreviated to kilo.

<span class="mw-page-title-main">Metre</span> SI unit of length

The metre is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second, where the second is defined by a hyperfine transition frequency of caesium.

<span class="mw-page-title-main">Measurement</span> Process of assigning numbers to objects or events

Measurement is the quantification of attributes of an object or event, which can be used to compare with other objects or events. In other words, measurement is a process of determining how large or small a physical quantity is as compared to a basic reference quantity of the same kind. The scope and application of measurement are dependent on the context and discipline. In natural sciences and engineering, measurements do not apply to nominal properties of objects or events, which is consistent with the guidelines of the International vocabulary of metrology published by the International Bureau of Weights and Measures. However, in other fields such as statistics as well as the social and behavioural sciences, measurements can have multiple levels, which would include nominal, ordinal, interval and ratio scales.

<span class="mw-page-title-main">Metre Convention</span> 1875 international treaty

The Metre Convention, also known as the Treaty of the Metre, is an international treaty that was signed in Paris on 20 May 1875 by representatives of 17 nations: Argentina, Austria-Hungary, Belgium, Brazil, Denmark, France, Germany, Italy, Peru, Portugal, Russia, Spain, Sweden and Norway, Switzerland, Ottoman Empire, United States of America, and Venezuela.

<span class="mw-page-title-main">International System of Units</span> Modern form of the metric system

The International System of Units, internationally known by the abbreviation SI, is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official status in nearly every country in the world, employed in science, technology, industry, and everyday commerce. The SI system is coordinated by the International Bureau of Weights and Measures which is abbreviated BIPM from French: Bureau international des poids et mesures.

<span class="mw-page-title-main">SI base unit</span> One of the seven units of measurement that define the metric system

The SI base units are the standard units of measurement defined by the International System of Units (SI) for the seven base quantities of what is now known as the International System of Quantities: they are notably a basic set from which all other SI units can be derived. The units and their physical quantities are the second for time, the metre for length or distance, the kilogram for mass, the ampere for electric current, the kelvin for thermodynamic temperature, the mole for amount of substance, and the candela for luminous intensity. The SI base units are a fundamental part of modern metrology, and thus part of the foundation of modern science and technology.

<span class="mw-page-title-main">Second</span> SI unit of time

The second is a unit of time, historically defined as 186400 of a day – this factor derived from the division of the day first into 24 hours, then to 60 minutes and finally to 60 seconds each.

A time standard is a specification for measuring time: either the rate at which time passes or points in time or both. In modern times, several time specifications have been officially recognized as standards, where formerly they were matters of custom and practice. An example of a kind of time standard can be a time scale, specifying a method for measuring divisions of time. A standard for civil time can specify both time intervals and time-of-day.

<span class="mw-page-title-main">Metric system</span> Metre-based systems of measurement

The metric system is a decimal-based system of measurement. The current international standard for the metric system is the International System of Units, in which all units can be expressed in terms of seven base units: the metre (m), kilogram (kg), second (s), ampere (A), kelvin (K), mole (mol), and candela (cd). These can be made into larger or smaller units with the use of metric prefixes.

<span class="mw-page-title-main">Metrology</span> Science of measurement and its application

Metrology is the scientific study of measurement. It establishes a common understanding of units, crucial in linking human activities. Modern metrology has its roots in the French Revolution's political motivation to standardise units in France when a length standard taken from a natural source was proposed. This led to the creation of the decimal-based metric system in 1795, establishing a set of standards for other types of measurements. Several other countries adopted the metric system between 1795 and 1875; to ensure conformity between the countries, the Bureau International des Poids et Mesures (BIPM) was established by the Metre Convention. This has evolved into the International System of Units (SI) as a result of a resolution at the 11th General Conference on Weights and Measures (CGPM) in 1960.

<span class="mw-page-title-main">International System of Quantities</span> System of quantities used in science and their interrelationships

The International System of Quantities (ISQ) is a standard system of quantities used in physics and in modern science in general. It includes basic quantities such as length and mass and the relationships between those quantities. This system underlies the International System of Units (SI) but does not itself determine the units of measurement used for the quantities.

The Unified Code for Units of Measure (UCUM) is a system of codes for unambiguously representing measurement units. Its primary purpose is machine-to-machine communication rather than communication between humans. UCUM is used by different organizations like IEEE, and standards like DICOM, LOINC, HL7, and ISO 11240:2012.

<span class="mw-page-title-main">Unit of measurement</span> Quantity standard

A unit of measurement, or unit of measure, is a definite magnitude of a quantity, defined and adopted by convention or by law, that is used as a standard for measurement of the same kind of quantity. Any other quantity of that kind can be expressed as a multiple of the unit of measurement.

<span class="mw-page-title-main">Atomic clock</span> Clock that monitors the resonant frequency of atoms

An atomic clock is a clock that measures time by monitoring the resonant frequency of atoms. It is based on atoms having different energy levels. Electron states in an atom are associated with different energy levels, and in transitions between such states they interact with a very specific frequency of electromagnetic radiation. This phenomenon serves as the basis for the International System of Units' (SI) definition of a second:

The second, symbol s, is the SI unit of time. It is defined by taking the fixed numerical value of the caesium frequency, , the unperturbed ground-state hyperfine transition frequency of the caesium-133 atom, to be 9192631770 when expressed in the unit Hz, which is equal to s−1.

<span class="mw-page-title-main">Standard (metrology)</span> Object, system, or experiment which relates to a unit of measurement of a physical quantity

In metrology, a standard is an object, system, or experiment that bears a defined relationship to a unit of measurement of a physical quantity. Standards are the fundamental reference for a system of weights and measures, against which all other measuring devices are compared. Historical standards for length, volume, and mass were defined by many different authorities, which resulted in confusion and inaccuracy of measurements. Modern measurements are defined in relationship to internationally standardized reference objects, which are used under carefully controlled laboratory conditions to define the units of length, mass, electrical potential, and other physical quantities.

<span class="mw-page-title-main">2019 revision of the SI</span> Definition of the units kg, A, K and mol

In 2019, four of the seven SI base units specified in the International System of Quantities were redefined in terms of natural physical constants, rather than human artefacts such as the standard kilogram. Effective 20 May 2019, the 144th anniversary of the Metre Convention, the kilogram, ampere, kelvin, and mole are now defined by setting exact numerical values, when expressed in SI units, for the Planck constant, the elementary electric charge, the Boltzmann constant, and the Avogadro constant, respectively. The second, metre, and candela had previously been redefined using physical constants. The four new definitions aimed to improve the SI without changing the value of any units, ensuring continuity with existing measurements. In November 2018, the 26th General Conference on Weights and Measures (CGPM) unanimously approved these changes, which the International Committee for Weights and Measures (CIPM) had proposed earlier that year after determining that previously agreed conditions for the change had been met. These conditions were satisfied by a series of experiments that measured the constants to high accuracy relative to the old SI definitions, and were the culmination of decades of research.

<span class="mw-page-title-main">History of the metric system</span>

The history of the metric system began during the Age of Enlightenment with measures of length and weight derived from nature, along with their decimal multiples and fractions. The system became the standard of France and Europe within half a century. Other measures with unity ratios were added, and the system went on to be adopted across the world.

<span class="mw-page-title-main">Outline of the metric system</span> Overview of and topical guide to the metric system

The following outline is provided as an overview of and topical guide to the metric system:

References

  1. 1 2 "Realise" . Oxford English Dictionary (Online ed.). Oxford University Press.(Subscription or participating institution membership required.)
  2. "BIPM statement: Information for users about the proposed revision of the SI" (PDF). Archived (PDF) from the original on 21 January 2018. Retrieved 5 May 2018.
  3. "Decision CIPM/105-13 (October 2016)". Archived from the original on 24 August 2017. Retrieved 31 August 2017.
  4. Wilkie, Tom (27 October 1983). "Time to remeasure the metre". New Scientist (27 October 1983): 258–263.
  5. International Bureau of Weights and Measures (2012). "Practical realization of the definitions of some important units". p. 46. Retrieved 23 April 2013.
  6. International vocabulary of metrologyBasic and general concepts and associated terms (VIM) (PDF) (3rd ed.). International Bureau of Weights and Measures on behalf of the Joint Committee for Guides in Metrology. 2012. Retrieved 26 April 2013.
  7. Quinn, T. J. (2003). "Practical realisation of the definition of the metre, including recommended radiations of other optical frequency standards (2001)" (PDF). Metrologia. 40: 103–133. Bibcode:2003Metro..40..103Q. doi:10.1088/0026-1394/40/2/316 . Retrieved 6 December 2013.