Sand dollar

Last updated

Sand dollars
Temporal range: 56–0  Ma
O
S
D
C
P
T
J
K
Pg
N
Late Paleocene to Recent [1]
Clypeaster reticulatus.jpg
A live individual of Clypeaster reticulatus (Mayotte)
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Echinodermata
Class: Echinoidea
Superorder: Gnathostomata
Order: Clypeasteroida
Suborders and families

See text.

Sand dollars (also known as sea cookies or snapper biscuits in New Zealand and Brazil, or pansy shells in South Africa) are species of flat, burrowing sea urchins belonging to the order Clypeasteroida. Some species within the order, not quite as flat, are known as sea biscuits. Sand dollars can also be called "sand cakes" or "cake urchins". [2]

Contents

Names

The term "sand dollar" derives from the appearance of the tests (skeletons) of dead individuals after being washed ashore. The test lacks its velvet-like skin of spines and has often been bleached white by sunlight. To beachcombers of the past, this suggested a large, silver coin, such as the old Spanish dollar, which had a diameter of 38–40 mm.

Other names for the sand dollar include sand cakes, pansy shells, snapper biscuits, cake urchins, and sea cookies. [3] In South Africa, they are known as pansy shells from their suggestion of a five-petaled garden flower. The Caribbean sand dollar or inflated sea biscuit, Clypeaster rosaceus , is thicker in height than most. In Spanish-speaking areas of the Americas, the sand dollar is most often known as galleta de mar (sea cookie); the translated term is often encountered in English.

In the folklore of Georgia in the United States, sand dollars were believed to represent coins lost by mermaids. [4]

Description

Leodia sexiesperforata by Louis Agassiz (1841) Leodia sexiesperforata derivada 2013.jpg
Leodia sexiesperforata by Louis Agassiz (1841)
Examples of Rotulidae Rotulidae.JPG
Examples of Rotulidae
Encope emarginata (aboral and oral faces) by Ernst Haeckel (1904) Encope emarginata (Leske, 1778) derivate 2013.jpg
Encope emarginata (aboral and oral faces) by Ernst Haeckel (1904)
Clypeaster rosaceus (aboral and oral faces) by Ernst Haeckel (1904) Clypeaster rosaceus (Linnaeus, 1758) derivate 2013.jpg
Clypeaster rosaceus (aboral and oral faces) by Ernst Haeckel (1904)

Sand dollars diverged from the other irregular echinoids, namely the cassiduloids, during the early Jurassic, [5] with the first true sand dollar genus, Togocyamus , arising during the Paleocene. Soon after Togocyamus, more modern-looking groups emerged during the Eocene. [1]

Sand dollars are small in size, averaging from 80 to 100 mm (3 to 4 inches). [6] As with all members of the order Clypeasteroida, they possess a rigid skeleton called a test. The test consists of calcium carbonate plates arranged in a fivefold symmetric pattern. [7] The test of certain species of sand dollar have slits called lunules that can help the animal stay embedded in the sand to stop it from being swept away by an ocean wave. [8] In living individuals, the test is covered by a skin of velvet-textured spines which are covered with very small hairs (cilia). Coordinated movements of the spines enable sand dollars to move across the seabed. The velvety spines of live sand dollars appear in a variety of colors—green, blue, violet, or purple—depending on the species. Individuals which are very recently dead or dying (moribund) are sometimes found on beaches with much of the external morphology still intact. Dead individuals are commonly found with their empty test devoid of all surface material and bleached white by sunlight.

The bodies of adult sand dollars, like those of other echinoids, display radial symmetry. The petal-like pattern in sand dollars consists of five paired rows of pores. The pores are perforations in the endoskeleton through which podia for gas exchange project from the body. The mouth of the sand dollar is located on the bottom of its body at the center of the petal-like pattern. Unlike other urchins, the bodies of sand dollars also display secondary front-to-back bilateral symmetry with no morphological distinguishing features between males and females. The anus of sand dollars is located at the back rather than at the top as in most urchins, with many more bilateral features appearing in some species. These result from the adaptation of sand dollars, in the course of their evolution, from creatures that originally lived their lives on top of the seabed (epibenthos) to creatures that burrow beneath it (endobenthos).

Suborders and families

According to World Register of Marine Species:

Behavior and habitat

A sand dollar digging into the sand on the Playa Novillero beach at low tide on the Pacific coast of Mexico
Spines on the underside of a sand dollar on the beach at Hilton Head Island, South Carolina

Sand dollars can be found in temperate and tropical zones along all continents. [6] Sand dollars live in waters below the mean low tide line, on or just beneath the surface of sandy and muddy areas. The common sand dollar, Echinarachnius parma , can be found in the Northern Hemisphere from the intertidal zone to the depths of the ocean, while the keyhole sand dollars (three species of the genus Mellita ) can be found on many a wide range of coasts in and around the Caribbean Sea.

The spines on the somewhat flattened topside and underside of the animal allow it to burrow or creep through the sediment when looking for shelter or food. Fine, hair-like cilia cover these tiny spines. [9] Sand dollars usually eat algae and organic matter found along the ocean floor, though some species will tip on their side to catch organic matter floating in ocean currents. [8]

Sand dollars frequently gather on the ocean floor, in part to their preference for soft bottom areas, which are convenient for their reproduction.[ why? ] The sexes are separate and, as with most echinoids, gametes are released into the water column and go through external fertilization. The nektonic larvae metamorphose through several stages before the skeleton or test begins to form, at which point they become benthic.

In 2008, biologists discovered that sand dollar larvae will clone themselves for a few different reasons. When a predator is near, certain species of sand dollar larvae will split themselves in half in a process they use to asexually clone themselves when sensing danger. The cloning process can take up to 24 hours and creates larvae that are 2/3 smaller than their original size which can help conceal them from the predator. [10] The larvae of these sand dollars clone themselves when they sense dissolved mucus from a predatory fish. The larvae exposed to this mucus from the predatory fish respond to the threat by cloning themselves. This process doubles their population and halves their size which allows them to better escape detection by the predatory fish but may make them more vulnerable to attacks from smaller predators like crustaceans. Sand dollars will also clone themselves during normal asexual reproduction. Larvae will undergo this process when food is plentiful or temperature conditions are optimal. Cloning may also occur to make use of the tissues that are normally lost during metamorphosis.

The flattened test of the sand dollar allows it to burrow into the sand and remain hidden from sight from potential predators. [8] Predators of the sand dollar are the fish species cod, flounder, sheepshead and haddock. These fish will prey on sand dollars even through their tough exterior. [9]

Sand dollars have spines on their bodies that help them to move around the ocean floor. When a sand dollar dies, it loses the spines and becomes smooth as the exoskeleton is then exposed. [11]

Related Research Articles

<span class="mw-page-title-main">Echinoderm</span> Exclusively marine phylum of animals with generally 5-point radial symmetry

An echinoderm is any animal of the phylum Echinodermata, which includes starfish, brittle stars, sea urchins, sand dollars and sea cucumbers, as well as the sessile sea lilies or "stone lilies". While bilaterally symmetrical as larvae, as adults echinoderms are recognisable by their usually five-pointed radial symmetry, and are found on the sea bed at every ocean depth from the intertidal zone to the abyssal zone. The phylum contains about 7,600 living species, making it the second-largest group of deuterostomes after the chordates, as well as the largest marine-only phylum. The first definitive echinoderms appeared near the start of the Cambrian.

<span class="mw-page-title-main">Sea urchin</span> Class of marine invertebrates

Sea urchins or urchins are typically spiny, globular animals, echinoderms in the class Echinoidea. About 950 species live on the seabed, inhabiting all oceans and depth zones from the intertidal to 5,000 metres. Their tests are round and spiny, typically from 3 to 10 cm across. Sea urchins move slowly, crawling with their tube feet, and sometimes pushing themselves with their spines. They feed primarily on algae but also eat slow-moving or sessile animals. Their predators include sharks, sea otters, starfish, wolf eels, and triggerfish.

<i>Echinothrix diadema</i> Species of sea urchin

The diadema urchin or blue-black urchin is a species of tropical sea urchin, member of the Diadematidae family.

<span class="mw-page-title-main">Keyhole sand dollar</span> Common name for several species of sea urchin

Keyhole sand dollar refers to five living species of sand dollars in the genus Mellita, plus the extinct †Mellita aclinensis. They are found on the Atlantic coasts of the Americas, ranging across the Caribbean Islands, from the southern United States at the north, to the southeastern coast of Brazil at the south. Their range includes the Pacific coast of equatorial countries, such Central American countries and near, in the north sporadically across the Pacific coast of Mexico.

<i>Meoma ventricosa</i> Species of sea urchin

Meoma ventricosa, known by the common names cake urchin and red heart urchin, is a large species of sea urchin which lives in shallow waters in the Caribbean. It may reach a diameter of twenty centimeters and is covered in reddish-brown spines. It has both pentagonal radial symmetry and bilateral symmetry, giving it a sand-dollar appearance; however, two of its five sections are merged more closely than the others.

<i>Dendraster excentricus</i> Species of sea urchin

Dendraster excentricus, also known as the eccentric sand dollar, sea-cake, biscuit-urchin, western sand dollar, or Pacific sand dollar, is a species of sand dollar in the family Dendrasteridae. It is a flattened, burrowing sea urchin found in the north-eastern Pacific Ocean from Alaska to Baja California.

<i>Echinometra mathaei</i> Species of sea urchin

Echinometra mathaei, the burrowing urchin, is a species of sea urchin in the family Echinometridae. It occurs in shallow waters in the Indo-Pacific region. The type locality is Mauritius.

<i>Echinocardium cordatum</i> Species of sea urchin

Echinocardium cordatum, also known as the common heart urchin or the sea potato, is a sea urchin in the family Loveniidae. It is found in sub-tidal regions in temperate seas throughout the world. It lives buried in the sandy sea floor.

<i>Clypeaster</i> Genus of sea urchins

Clypeaster, common name "cake urchins" or "sea biscuits", is a genus of echinoderms belonging to the family Clypeasteridae.

<i>Eucidaris metularia</i> Species of echinoderm

Eucidaris metularia, the ten-lined urchin, is a species of sea urchins in the family Cidaridae. It is found in shallow parts of the Indo-Pacific Ocean and is characterised by its sparse covering of banded, flat-tipped spines.

<i>Diadema savignyi</i> Species of sea urchin

Diadema savignyi is a species of long-spined sea urchin belonging to the family Diadematidae. Common names include long-spined sea urchin, black longspine urchin and the banded diadem. It is native to the east coast of Africa, the Red Sea, the Indian Ocean and western Pacific Ocean. It was first described in 1829 by the French naturalist Jean Victoire Audouin. The specific epithet honours the French zoologist Marie Jules César Savigny who described many new marine species from the Mediterranean Sea and Red Sea. The type locality is Mauritius.

<i>Heliophora</i> Genus of sea urchins

Heliophora orbicularis, also known as the West African Sand Dollar, is a small sand dollar in to the family Rotulidae, and the only species in the genus Heliophora. It, and other members of Rotulidae have been found in West African marine strata from the Late Miocene onward. Like the related Rotula, it is still extant.

<span class="mw-page-title-main">Irregularia</span> Group of sea urchins

Irregularia is an extant infraclass of sea urchins that first appeared in the Lower Jurassic.

<span class="mw-page-title-main">Neognathostomata</span> Suborder of sea urchins

The Neognathostomata are a superorder of sea urchins.

<i>Clypeaster reticulatus</i> Species of sea urchin

Clypeaster reticulatus, the reticulated sea biscuit, is a species of sea urchin in the family Clypeasteridae. This species was first scientifically described in 1758 by Carl Linnaeus. It lives on the sandy seabed of shallow seas, semi-immersed in the sediment.

<span class="mw-page-title-main">Clypeasteridae</span> Family of sea urchins

Clypeasteridae is a family of sea urchins in the order Clypeasteroida. This family was first scientifically described in 1835 by the Swiss-American biologist Louis Agassiz.

<i>Clypeaster rosaceus</i> Species of sea urchin

Clypeaster rosaceus, the fat sea biscuit, is a species of sea urchin in the family Clypeasteridae. It occurs in shallow water in the western Atlantic Ocean and was first scientifically described in 1758 by Carl Linnaeus.

<i>Clypeaster japonicus</i> Species of sea urchin

Clypeaster japonicus, the Japanese sea biscuit, is a species of sea urchin in the family Clypeasteridae. This species was first scientifically described in 1885 by the German zoologist Ludwig Heinrich Philipp Döderlein.

<i>Leodia sexiesperforata</i> Species of sea urchin

Leodia sexiesperforata, commonly known as the six-holed keyhole urchin, is a species of sand dollar, in the echinoderm order Clypeasteroida. It is native to tropical and sub-tropical parts of the western Atlantic Ocean where it buries itself in soft sediment in shallow seas.

<span class="mw-page-title-main">Mellitidae</span> Family of sea urchins

Mellitidae is a family of sand dollars, in the echinoderm order Clypeasteroida. These irregular sea urchins bury themselves in soft sediment in shallow seas.

References

  1. 1 2 The Paleobiology Database
  2. Kennedy, Jennifer (9 October 2019). "Sand Dollar Facts". ThoughtCo.
  3. "Everything You Need to Know About the Sand Dollar". Sand Dollar Shelling. 29 November 2021.
  4. Bryant, David; Davidson, George (2003). Georgia's Amazing Coast: Natural Wonders from Alligators to Zoeas. University of Georgia Press. ISBN   978-0-8203-2533-0.[ page needed ]
  5. Kier, Porter M. (January 1982). "Rapid evolution in echinoids". Palaeontology. 25 (1): 1–9. BHL page 49707713.
  6. 1 2 Encyclopedia of Animals. Great Neck Publishing. 2017.
  7. "Sand Dollar Printout - Enchanted Learning Software". Enchanted Learning. 2000.
  8. 1 2 3 Grzimek, Bernhard (2004) [2003]. Grzimek's animal life encyclopedia. Neil Schlager, Donna Olendorf, American Zoo and Aquarium Association (2nd ed.). Detroit: Gale. ISBN   0-7876-5362-4. OCLC   49260053.[ page needed ]
  9. 1 2 Sayre, April Pulley (1996). Seashore (1st ed.). New York: Twenty-First Century Books. ISBN   0-8050-4085-4. OCLC   34516888.[ page needed ]
  10. Choi, Charles Q. (May 2008). "Split Defense". Scientific American. 298 (5): 38. Bibcode:2008SciAm.298e..38C. doi:10.1038/scientificamerican0508-38b.
  11. Nelson, Angela (10 June 2022). "9 Fascinating Facts About Sand Dollars". Treehugger.