Taxonomy of commonly fossilised invertebrates

Last updated
The Ordovician cystoid Echinosphaerites (an extinct echinoderm of the Class Rhombifera) from northeastern Estonia; encrusted by a graptolite (black branches). GraptoliteEchinosphaerites.jpg
The Ordovician cystoid Echinosphaerites (an extinct echinoderm of the Class Rhombifera) from northeastern Estonia; encrusted by a graptolite (black branches).

Taxonomy of commonly fossilized invertebrates combines both traditional and modern paleozoological terminology. This article provides an overview of various invertebrate taxa found in the fossil record, ranging from protists to arthropods. The taxonomy discussed emphasizes invertebrates that are either frequently collected as fossils or are extinct. This includes groups that are significant in paleontological contexts, abundant in the fossil record, or have a high proportion of extinct species. Special notations are explained below:

Contents

The paleobiologic systematics that follow are not intended to be comprehensive, rather encompass invertebrates that (a) are popularly collected as fossils and/or (b) extinct. As a result, some groups of invertebrates are not listed. [1]

If an invertebrate animal is mentioned below using its common (vernacular) name, it is an extant (living) taxon, but if it is cited by its scientific genus, then it is typically an extinct invertebrate known only from the fossil record. [2]

Invertebrate clades that are important fossils (e.g. ostracods, frequently used as index fossils), and/or clades that are very abundant as fossils (e.g. crinoids, easily found in crinoidal limestone), [3] are highlighted with a bracketed exclamation mark [ ! ].

Domain of Eukaryota/Eukarya

Quinqueloculina, a foraminiferan (a type of protist) from Donegal Bay, Ireland. QuinqueloculinaDonegalBay.jpg
Quinqueloculina, a foraminiferan (a type of protist) from Donegal Bay, Ireland.

Eukaryotes; eukaryotes are cellular organisms bearing a central, organized nucleus with DNA.

Sub-domain of Opisthokonta

Opisthokonts; the animal-related kingdoms. Include: proto-spongal choanoflagellates; proto-fungal microsporidians; true fungi; true animals.

Kingdom of Animalia / Metazoa - All Invertebrates and Vertebrates

Metazoans; multicellular "true" animals (multicellular creatures that capture and ingest their organic food).

Sub-kingdom of Parazoa

Parazoans; typically sessile, basal non-eumetazoans. They are the most-primitive animals, comprising simple, colonial, attached, bottom-dwelling marine invertebrates.

Phylum Archaeocyatha/Archeocyatha/Archaeocyathida/Archeocyathida/Pleospongia [†]

Cone-shaped archaeocyathids/archeocyathids; cup-shaped archaeocyathans/archeocyathans; reef-building pleosponges;calcareous "ancient-cups".

Includes fossil genera such Archaeocyathus, Cambrocyathus, Atikonia, Tumuliolynthus, Kotuyicyathus, Metaldetes, Ajacicyathus and Paranacyathus.

Archaeocyatha is sometimes classified as a class of Porifera below.

Phylum Porifera/Nuda/Spongia

Pattersonia ulrichi Rauff, 1894; an Ordovician hexactinellid sponge from near Cincinnati, Ohio. Pattersonia ulrichi Rauff, 1894.JPG
Pattersonia ulrichi Rauff, 1894; an Ordovician hexactinellid sponge from near Cincinnati, Ohio.
Tetractinella trigonella at MUSE - Science Museum in Trento Tetractinella trigonella - MUSE.jpg
Tetractinella trigonella at MUSE - Science Museum in Trento

Quintessential true sponges; marine, colonial, pore-bearing animals; organized collar-flagellates; poriferans - today mostly siliceous – half of all documented species of Porifera are fossils and extinct. [4]

Porifera may eventually be broken up into separate phyla:

Sub-kingdom of Eumetazoa

Eumetazoans; true metazoans (typically mobile, multicellular animals).

Eumetazoa contains most of the living and deceased species of recorded life, including most invertebrates (extinct and extant), as well as all vertebrate animals.

Super-phylum of Radiata

Radiates; non-bilaterian eumetazoans.

Phylum Cnidaria/Coelenterata

Aulopora (a tabulate coral) from the Silica Shale (Middle Devonian), northwestern Ohio. AuloporaDevonianSilicaShale.jpg
Aulopora (a tabulate coral) from the Silica Shale (Middle Devonian), northwestern Ohio.

Cnidarians/coelenterates:

Super-phylum of Lophotrochozoa / Protostomia # 1

Lophotrochozoan bilaterians, such as flatworms, ribbon worms, lophophorates, and molluscs.

Phylum Bryozoa/Ectoprocta/Polyzoa

Heterotrypa, a trepostome bryozoan from the Corryville Formation (Upper Ordovician) in Covington, Kentucky. Heterotrypa Corryville.JPG
Heterotrypa, a trepostome bryozoan from the Corryville Formation (Upper Ordovician) in Covington, Kentucky.

Bryozoans – half of all documented species of Bryozoa are fossils and extinct. [5]

Phylum Brachiopoda

Rhynchotrema dentatum, a rhynchonellid brachiopod from the Cincinnatian (Upper Ordovician) of southeastern Indiana. Rhynchotremadentatum.jpg
Rhynchotrema dentatum, a rhynchonellid brachiopod from the Cincinnatian (Upper Ordovician) of southeastern Indiana.

Lampshells, brachiopods or "brachs," (not to be confused with the hard-shelled marine mollusks below) – 99% of all documented species of Brachiopoda are now extinct.

Phylum Annelida

Segmented worms such as earthworms and leeches.

Phylum Mollusca

Peltoceras solidum ammonite from the Matmor Formation (Jurassic, Callovian) in the Matmor Formation, Makhtesh Gadol, Israel. Peltoceras solidum Israel.JPG
Peltoceras solidum ammonite from the Matmor Formation (Jurassic, Callovian) in the Matmor Formation, Makhtesh Gadol, Israel.
Vermetid gastropod Petaloconchus intortus attached to a branch of the coral Cladocora; Pliocene of Cyprus. Petaloconchus Cyprus Pliocene.JPG
Vermetid gastropod Petaloconchus intortus attached to a branch of the coral Cladocora ; Pliocene of Cyprus.

Molluscs or mollusks, not to be confused with the hard-shelled marine brachiopods above.

Super-phylum of Ecdysozoa/Protostomia # 2

Ecdysozoans, such as nematodes, horsehair worms, and molting bilaterians/panarthropods

Phylum Tardigrada

Panarthropodic water bears.

Phylum Onychophora

Panarthropodic velvet worms, including proto-arthropodic fossils of Arthropleura and Aysheaia.

Phylum Arthropoda

Elrathia kingii (trilobite) from the Wheeler Shale (Middle Cambrian), Utah. ElrathiakingiUtahWheelerCambrian.jpg
Elrathia kingii (trilobite) from the Wheeler Shale (Middle Cambrian), Utah.

Arthropods; jointed legged creatures with an exoskeleton.

Super-phylum of Deuterostomia / Enterocoelomata

Second-mouthed bilaterians called deuterostomians, such as chordates and echinoderms.

Phylum Echinodermata

Middle Jurassic (Callovian) crinoid pluricolumnals (Apiocrinites) from the Matmor Formation in Hamakhtesh Hagadol, southern Israel. JurassicCrinoidsIsrael.JPG
Middle Jurassic (Callovian) crinoid pluricolumnals (Apiocrinites) from the Matmor Formation in Hamakhtesh Hagadol, southern Israel.

Echinoderms – 72% of all documented species of Echinodermata are fossils and extinct. [7]

Phylum Hemichordata

Pendeograptus fruticosus graptolites from the Bendigonian Australian Stage (Lower Ordovician) near Bendigo, Victoria, Australia. Two overlapping, three-stiped rhabdosomes. TetragraptusfruticosusBendigonian.jpg
Pendeograptus fruticosus graptolites from the Bendigonian Australian Stage (Lower Ordovician) near Bendigo, Victoria, Australia. Two overlapping, three-stiped rhabdosomes.

Hemichordates such as extant acorn worms – Less than half of the documented species of Hemichordata are fossils and extinct.

Phylum Chordata

Both invertebrate and vertebrate chordates; animals possessing a notochord.

Invertebrate subphyla

Subphylum Vertebrata

Deinosuchus hatcheri at the Natural History Museum of Utah. Deinosuchus hatcheri 052913.jpg
Deinosuchus hatcheri at the Natural History Museum of Utah.

See also

Related Research Articles

<span class="mw-page-title-main">Bryozoa</span> Phylum of colonial aquatic invertebrates called moss animals

Bryozoa are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about 0.5 millimetres long, they have a special feeding structure called a lophophore, a "crown" of tentacles used for filter feeding. Most marine bryozoans live in tropical waters, but a few are found in oceanic trenches and polar waters. The bryozoans are classified as the marine bryozoans (Stenolaemata), freshwater bryozoans (Phylactolaemata), and mostly-marine bryozoans (Gymnolaemata), a few members of which prefer brackish water. 5,869 living species are known. At least two genera are solitary ; the rest are colonial.

<span class="mw-page-title-main">Cnidaria</span> Aquatic animal phylum having cnydocytes

Cnidaria, is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, including jellyfish, hydroids, sea anemones, corals and some of the smallest marine parasites. Their distinguishing features are a decentralized nervous system distributed throughout a gelatinous body and the presence of cnidocytes or cnidoblasts, specialized cells with ejectable flagella used mainly for envenomation and capturing prey. Their bodies consist of mesoglea, a non-living, jelly-like substance, sandwiched between two layers of epithelium that are mostly one cell thick. Cnidarians are also some of the only animals that can reproduce both sexually and asexually.

<span class="mw-page-title-main">Invertebrate</span> Animals without a vertebral column

Invertebrates is an umbrella term describing animals that neither develop nor retain a vertebral column, which evolved from the notochord. It is a paraphyletic grouping including all animals excluding the chordate subphylum Vertebrata, i.e. vertebrates. Well-known phyla of invertebrates include arthropods, mollusks, annelids, echinoderms, flatworms, cnidarians and sponges.

<span class="mw-page-title-main">Archaeocyatha</span> Class of sponges

Archaeocyatha is a taxon of extinct, sessile, reef-building marine sponges that lived in warm tropical and subtropical waters during the Cambrian Period. It is believed that the centre of the Archaeocyatha origin is now located in East Siberia, where they are first known from the beginning of the Tommotian Age of the Cambrian, 525 million years ago (mya). In other regions of the world, they appeared much later, during the Atdabanian, and quickly diversified into over a hundred families.

<span class="mw-page-title-main">Sponge</span> Animals of the phylum Porifera

Sponges, the members of the phylum Porifera, are a basal animal clade as a sister of the diploblasts. They are multicellular organisms that have bodies full of pores and channels allowing water to circulate through them, consisting of jelly-like mesohyl sandwiched between two thin layers of cells.

<span class="mw-page-title-main">Parazoa</span> Ancestral subkingdom of animals

Parazoa are a taxon with sub-kingdom category that is located at the base of the phylogenetic tree of the animal kingdom in opposition to the sub-kingdom Eumetazoa; they group together the most primitive forms, characterized by not having proper tissues or that, in any case, these tissues are only partially differentiated. They generally group a single phylum, Porifera, which lack muscles, nerves and internal organs, which in many cases resembles a cell colony rather than a multicellular organism itself. All other animals are eumetazoans, which do have differentiated tissues.

<span class="mw-page-title-main">Eumetazoa</span> Basal animal clade as a sister group of the Porifera

Eumetazoa, also known as diploblasts, Epitheliozoa or Histozoa, are a proposed basal animal clade as a sister group of Porifera (sponges). The basal eumetazoan clades are the Ctenophora and the ParaHoxozoa. Placozoa is now also seen as a eumetazoan in the ParaHoxozoa. The competing hypothesis is the Myriazoa clade.

<span class="mw-page-title-main">Calcareous sponge</span> Class of marine sponges of the phylum Porifera which have spicules of calcium carbonate

The calcareoussponges are members of the animal phylum Porifera, the cellular sponges. They are characterized by spicules made of calcium carbonate, in the form of high-magnesium calcite or aragonite. While the spicules in most species are triradiate, some species may possess two- or four-pointed spicules. Unlike other sponges, calcareans lack microscleres, tiny spicules which reinforce the flesh. In addition, their spicules develop from the outside-in, mineralizing within a hollow organic sheath.

Stenolaemata are a class of exclusively marine bryozoans. Stenolaemates originated and diversified in the Ordovician, and more than 600 species are still alive today. All extant (living) species are in the order Cyclostomatida, the third-largest order of living bryozoans.

<span class="mw-page-title-main">Demosponge</span> Class of sponges

Demosponges (Demospongiae) are the most diverse class in the phylum Porifera. They include greater than 90% of all species of sponges with nearly 8,800 species worldwide. They are sponges with a soft body that covers a hard, often massive skeleton made of calcium carbonate, either aragonite or calcite. They are predominantly leuconoid in structure. Their "skeletons" are made of spicules consisting of fibers of the protein spongin, the mineral silica, or both. Where spicules of silica are present, they have a different shape from those in the otherwise similar glass sponges. Some species, in particular from the Antarctic, obtain the silica for spicule building from the ingestion of siliceous diatoms.

The Treatise on Invertebrate Paleontology published by the Geological Society of America and the University of Kansas Press, is a definitive multi-authored work of some 50 volumes, written by more than 300 paleontologists, and covering every phylum, class, order, family, and genus of fossil and extant invertebrate animals. The prehistoric invertebrates are described as to their taxonomy, morphology, paleoecology, stratigraphic and paleogeographic range. However, taxa with no fossil record whatsoever have just a very brief listing.

<span class="mw-page-title-main">Stromatoporoidea</span> Extinct clade of sponges

Stromatoporoidea is an extinct clade of sea sponges common in the fossil record from the Middle Ordovician to the Late Devonian. They can be characterized by their densely layered calcite skeletons lacking spicules. Stromatoporoids were among the most abundant and important reef-builders of their time, living close together in flat biostromes or elevated bioherms on soft tropical carbonate platforms.

<span class="mw-page-title-main">Chancelloriidae</span> Extinct family of Cambrian organisms

The Chancelloriids are an extinct family of superficially sponge-like animals common in sediments from the Early Cambrian to the early Late Cambrian. Many of these fossils consists only of spines and other fragments, and it is not certain that they belong to the same type of organism. Other specimens appear to be more complete and to represent sessile, radially symmetrical hollow bag-like organisms with a soft skin armored with star-shaped calcareous sclerites from which radiate sharp spines.

<span class="mw-page-title-main">Marine invertebrates</span> Marine animals without a vertebrate column

Marine invertebrates are the invertebrates that live in marine habitats. Invertebrate is a blanket term that includes all animals apart from the vertebrate members of the chordate phylum. Invertebrates lack a vertebral column, and some have evolved a shell or a hard exoskeleton. As on land and in the air, marine invertebrates have a large variety of body plans, and have been categorised into over 30 phyla. They make up most of the macroscopic life in the oceans.

<span class="mw-page-title-main">Brachiopod</span> Phylum of marine animals also known as lamp shells

Brachiopods, phylum Brachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.

<span class="mw-page-title-main">Rhynchonelliformea</span> Subphylum of brachiopods

Rhynchonelliformea is a major subphylum and clade of brachiopods. It is roughly equivalent to the former class Articulata, which was used previously in brachiopod taxonomy up until the 1990s. These so-called articulated brachiopods have many anatomical differences relative to "inarticulate" brachiopods of the subphyla Linguliformea and Craniformea. Articulates have hard calcium carbonate shells with tongue-and-groove hinge articulations and separate sets of simple opening and closing muscles.

Fossils of many types of water-dwelling animals from the Devonian period are found in deposits in the U.S. state of Michigan. Among the more commonly occurring specimens are bryozoans, corals, crinoids, and brachiopods. Also found, but not so commonly, are armored fish called placoderms, snails, sharks, stromatolites, trilobites and blastoids.

Heteractinida is an extinct grade of Paleozoic (Cambrian–Permian) sponges, sometimes used as a class or order. They are most commonly considered paraphyletic with respect to Calcarea, though some studies instead argue that they are paraphyletic relative to Hexactinellida. Heteractinids can be distinguished by their six-pronged (snowflake-shaped) spicules, whose symmetry historically suggested a relationship with the triradial calcarean sponges.

The biological systematics and taxonomy of invertebrates as proposed by Richard C. Brusca and Gary J. Brusca in 2003 is a system of classification of invertebrates, as a way to classify animals without backbones.

<span class="mw-page-title-main">Amphidiscosida</span> Order of sponges

Amphidiscosida is an order of hexactinellids. The Amphidiscosida are commonly regarded as the only living sponges in the subclass Amphidiscophora.

References

  1. For superb anatomical illustrations and much-more comprehensive information, see Volume E (Archaeocyatha / Porifera) through Volume V (Graptolithina), published 1953 to 2006 (and continuing), of the Treatise on Invertebrate Paleontology , long-edited by Raymond C. Moore and Roger L. Kaesler (Boulder, Colorado: Geological Society of America; and Lawrence, Kansas: University of Kansas Press). But be warned that some terms therein employed – such as supersubphylum – can be unnecessarily wordy or abstruse. Incidentally, revised volumes have been recently published regarding the sponges/archaeocyatha (2004, ISBN   0-8137-3131-3) and the brachiopods (2006, ISBN   0-8137-3135-6).
  2. The names of genera, orders, classes and phyla have been culled from dozens of sources, both current and decades-old. See the International Code of Zoological Nomenclature (ICZN), as well as Volume 1 and Volume 2 of Grzimek's Animal Life Encyclopedia (Farmington Hills, Michigan: Gale Group), edited by zoologists Michael Hutchin, Dennis A. Thorney and Sean F. Craig (2003).
  3. For correspondingly ancient ecosystems, see the Treatise on Ecology and Paleoecology , Volume 2: Paleoecology, edited for years by Harry S. Ladd (1957 / 1971), and published by both the Geological Society of America (Boulder, Colorado) and the Waverly Press (Washington, D.C.).
  4. The rates of extinction for sponges and other phyla are derived from W. H. Easton, 1960, Invertebrate Paleontology (New York: Harper and Brothers) and various modern sources.
  5. For bryozoans and brachiopods, the same footnote as above.
  6. For bivalves and cephalopods (both mollusks), see the above notation.
  7. For the echinoderms, see the above footnote regarding W. E. Easton, 1960, Invertebrate Paleontology, and other sources.