Thallium(I) telluride

Last updated
Thallium(I) telluride
Names
Other names
Thallous telluride
Dithallium telluride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.031.730 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 234-916-9
PubChem CID
  • InChI=1S/Te.2Tl/q-2;2*+1 Yes check.svgY
    Key: XMGYGYGVPIYZNU-UHFFFAOYSA-N Yes check.svgY
  • [Tl][Te][Tl]
Properties
Tl2Te
Molar mass 536.367 g/mol
Melting point 415 °C (779 °F; 688 K) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Thallium(I) telluride (Tl2Te) is a chemical compound of thallium and tellurium. It has a structure related to that of Tl5Te3. [2] This compound is not well characterized. Its existence has only recently been confirmed by differential scanning calorimetry. [1] [3]

Related Research Articles

<span class="mw-page-title-main">Chalcogen</span> Group of chemical elements

The chalcogens are the chemical elements in group 16 of the periodic table. This group is also known as the oxygen family. Group 16 consists of the elements oxygen (O), sulfur (S), selenium (Se), tellurium (Te), and the radioactive elements polonium (Po) and livermorium (Lv). Often, oxygen is treated separately from the other chalcogens, sometimes even excluded from the scope of the term "chalcogen" altogether, due to its very different chemical behavior from sulfur, selenium, tellurium, and polonium. The word "chalcogen" is derived from a combination of the Greek word khalkόs (χαλκός) principally meaning copper, and the Latinized Greek word genēs, meaning born or produced.

<span class="mw-page-title-main">Indium</span> Chemical element with atomic number 49 (In)

Indium is a chemical element; it has symbol In and atomic number 49. It is a silvery-white post-transition metal and one of the softest elements. Chemically, indium is similar to gallium and thallium, and its properties are largely intermediate between the two. It was discovered in 1863 by Ferdinand Reich and Hieronymous Theodor Richter by spectroscopic methods and named for the indigo blue line in its spectrum.

<span class="mw-page-title-main">Tellurium</span> Chemical element with atomic number 52 (Te)

Tellurium is a chemical element; it has symbol Te and atomic number 52. It is a brittle, mildly toxic, rare, silver-white metalloid. Tellurium is chemically related to selenium and sulfur, all three of which are chalcogens. It is occasionally found in its native form as elemental crystals. Tellurium is far more common in the Universe as a whole than on Earth. Its extreme rarity in the Earth's crust, comparable to that of platinum, is due partly to its formation of a volatile hydride that caused tellurium to be lost to space as a gas during the hot nebular formation of Earth.

<span class="mw-page-title-main">Thallium</span> Chemical element with atomic number 81 (Tl)

Thallium is a chemical element; it has symbol Tl and atomic number 81. It is a silvery-white post-transition metal that is not found free in nature. When isolated, thallium resembles tin, but discolors when exposed to air. Chemists William Crookes and Claude-Auguste Lamy discovered thallium independently in 1861, in residues of sulfuric acid production. Both used the newly developed method of flame spectroscopy, in which thallium produces a notable green spectral line. Thallium, from Greek θαλλός, thallós, meaning "green shoot" or "twig", was named by Crookes. It was isolated by both Lamy and Crookes in 1862; Lamy by electrolysis and Crookes by precipitation and melting of the resultant powder. Crookes exhibited it as a powder precipitated by zinc at the international exhibition, which opened on 1 May that year.

<span class="mw-page-title-main">Boron group</span> Related chemical elements of the periodic table

The boron group are the chemical elements in group 13 of the periodic table, consisting of boron (B), aluminium (Al), gallium (Ga), indium (In), thallium (Tl) and nihonium (Nh). This group lies in the p-block of the periodic table. The elements in the boron group are characterized by having three valence electrons. These elements have also been referred to as the triels.

<span class="mw-page-title-main">Uranium dioxide</span> Chemical compound

Uranium dioxide or uranium(IV) oxide , also known as urania or uranous oxide, is an oxide of uranium, and is a black, radioactive, crystalline powder that naturally occurs in the mineral uraninite. It is used in nuclear fuel rods in nuclear reactors. A mixture of uranium and plutonium dioxides is used as MOX fuel. Prior to 1960, it was used as yellow and black color in ceramic glazes and glass.

<span class="mw-page-title-main">Dimethyl telluride</span> Chemical compound

Dimethyl telluride is an organotelluride compound, formula (CH3)2Te, also known by the abbreviation DMTe.

<span class="mw-page-title-main">Tellurium tetrachloride</span> Chemical compound

Tellurium tetrachloride is the inorganic compound with the empirical formula TeCl4. The compound is volatile, subliming at 200 °C at 0.1 mmHg. Molten TeCl4 is ionic, dissociating into TeCl3+ and Te2Cl102−.

<span class="mw-page-title-main">Thallium(I) iodide</span> Chemical compound

Thallium(I) iodide is a chemical compound with the formula . It is unusual in being one of the few water-insoluble metal iodides, along with , , , , and .

<span class="mw-page-title-main">Thallium(III) oxide</span> Chemical compound

Thallium(III) oxide, also known as thallic oxide, is a chemical compound of thallium and oxygen. It occurs in nature as the rare mineral avicennite. Its structure is related to that of Mn2O3 which has a bixbyite like structure. Tl2O3 is metallic with high conductivity and is a degenerate n-type semiconductor which may have potential use in solar cells. A method of producing Tl2O3 by MOCVD is known. Any practical use of thallium(III) oxide will always have to take account of thallium's poisonous nature. Contact with moisture and acids may form poisonous thallium compounds.

Selenium trioxide is the inorganic compound with the formula SeO3. It is white, hygroscopic solid. It is also an oxidizing agent and a Lewis acid. It is of academic interest as a precursor to Se(VI) compounds.

<span class="mw-page-title-main">Thallium(I) sulfide</span> Chemical compound

Thallium(I) sulfide, Tl2S, is a chemical compound of thallium and sulfur. This salt was used in some of the earliest photo-electric detectors by Theodore Case who developed the so-called thalofide (sometimes spelt thallofide) cell, used in early film projectors. Case described the detector material as consisting of thallium, oxygen and sulfur, and this was incorrectly described by others as being thallium oxysulfide, which incidentally is a compound that is not known. Case's work was then built on by R.J. Cashman who recognised that the controlled oxidation of the Tl2S film was key to the operation of the cell. Cashman's work culminated in the development of long wave infrared detectors used during the Second World War. Reliable Tl2S detectors were also developed in Germany at the same time.
Tl2S is found in nature as the mineral carlinite which has the distinction of being the only sulfide mineral of thallium that does not contain at least two metals. Tl2S has a distorted anti-CdI2 structure.
Tl2S can be prepared from the elements or by precipitating the sulfide from a solution of thallium(I), e.g. the sulfate or nitrate. Thin films have been deposited, produced from a mixture of citratothallium complex and thiourea. Heating the film in nitrogen at 300°C converts all the product into Tl2S

Organotellurium chemistry describes the synthesis and properties of organotellurium compounds, chemical compounds containing a carbon-tellurium chemical bond. Organotellurium chemistry is a lightly studied area, in part because of it having few applications.

<span class="mw-page-title-main">Antimony telluride</span> Chemical compound

Antimony telluride is an inorganic compound with the chemical formula Sb2Te3. As is true of other pnictogen chalcogenide layered materials, it is a grey crystalline solid with layered structure. Layers consist of two atomic sheets of antimony and three atomic sheets of tellurium and are held together by weak van der Waals forces. Sb2Te3 is a narrow-gap semiconductor with a band gap 0.21 eV; it is also a topological insulator, and thus exhibits thickness-dependent physical properties.

Thallane is an inorganic compound with the empirical chemical formula TlH3. It has not yet been obtained in bulk, hence its bulk properties remain unknown. However, molecular thallane has been isolated in solid gas matrices. Thallane is mainly produced for academic purposes.

<span class="mw-page-title-main">Post-transition metal</span> Category of metallic elements

The metallic elements in the periodic table located between the transition metals to their left and the chemically weak nonmetallic metalloids to their right have received many names in the literature, such as post-transition metals, poor metals, other metals, p-block metals and chemically weak metals. The most common name, post-transition metals, is generally used in this article.

<span class="mw-page-title-main">Hydrogen ditelluride</span> Chemical compound

Hydrogen ditelluride or ditellane is an unstable hydrogen dichalcogenide containing two tellurium atoms per molecule, with structure H−Te−Te−H or (TeH)2. Hydrogen ditelluride is interesting to theorists because its molecule is simple yet asymmetric and is predicted to be one of the easiest to detect parity violation, in which the left handed molecule has differing properties to the right handed one due to the effects of the weak force.

The telluride bromides are chemical compounds that contain both telluride ions (Te2−) and bromide ions (Br). They are in the class of mixed anion compounds or chalcogenide halides.

Lithium telluride (Li2Te) is an inorganic compound of lithium and tellurium. Along with LiTe3, it is one of the two intermediate solid phases in the lithium-tellurium system. It can be prepared by directly reacting lithium and tellurium in a beryllium oxide crucible at 950°C.

Lithium tritelluride is an intercalary compound of lithium and tellurium with empirical formula LiTe
3
. It is one of three known members of the Li-Te system, the others being the raw metals and lithium telluride.

References

  1. 1 2 Okamoto, H. (September 2000). "Te-Tl (Tellurium-Thallium)". Journal of Phase Equilibria. 21 (5): 501. doi:10.1361/105497100770339833. ISSN   1054-9714.
  2. Černý, Radovan; Joubert, Jean-Marc; Filinchuk, Yaroslav; Feutelais, Yves (2002). "Tl2Te and its relationship with Tl5Te3". Acta Crystallographica Section C. 58 (5): i63-5. Bibcode:2002AcCrC..58I..63C. doi:10.1107/S0108270102005085. PMID   11983960.
  3. Record, M.; Feutelais, Y.; Lukas, Hans Leo (1997). "Phase Diagram Investigation and Thermodynamic Evaluation of the Thallium–Tellurium System". International Journal of Materials Research. S2CID   99541579.