Torrenza

Last updated

Torrenza was an initiative announced by Advanced Micro Devices (AMD) in 2006 to improve support for the integration of specialized coprocessors in systems based on AMD Opteron microprocessors. Torrenza does not refer to a specific product or specific technology, though the primary focus is on the integration of coprocessor devices directly connected to the Opteron processors' HyperTransport links, and other co-processors connected via PCI Express. The initiative's stated goals include improving technical and technology support for third-party developers of coprocessing devices, reducing the cost of implementing HyperTransport interfaces on these devices, and improving the performance of the integrated system. It can be argued, that the original idea behind Torrenza was successfully implemented in form of Heterogeneous System Architecture by AMD and the other members of the HSA Foundation.

Contents

Goals

AMD expected tightly-integrated coprocessor technology to be a proving ground for developing and assessing technologies that may eventually migrate onto the processor die itself. Promoting third-party co-processors was envisioned as a stepping stone to the advanced CPU designs of the future and a platform for software development needed for those hardware designs. On June 1, 2006, AMD announced the Torrenza program. [1]

The Torrenza label was applied to both accelerator projects that pre-dated the announcement as well as projects announced later. Intel followed suit by opening up its front side bus to third-party companies, [2] alongside a PCI Express extension project jointly co-developed with IBM codenamed Geneseo .

On September 21, 2006, AMD announced expanded support for the program. Companies includes Cray, Fujitsu Siemens Computers, IBM, Sun Microsystems, Dell, Tarari and Hewlett-Packard. [3] The program web site existed through 2008. [4]

Technology

HyperTransport-connected devices can be installed in HTX slots or in Opteron CPU sockets. HTX slots are placed to allow access to external cabling and so are the natural location for network devices, such as the Qlogic Infinipath network adapter. As an alternative installation location, AMD CPU sockets provide access to the motherboard DRAM channels and support a larger power budget with room for the corresponding heat sink. In some system configurations, the CPU sockets provide access to multiple HyperTransport links that support higher frequencies than single 16-bit (per direction) 800 MHz link supported by the HTX slot.

Examples of devices that can be installed in AMD Opteron CPU sockets included field-programmable gate array (FPGA) co-processor modules. These fit in Socket 940 dual-socket motherboards and are based on Xilinx and Altera devices. They use HyperTransport to directly connect the FPGA devices to the other CPU socket and both provide memory controllers to access memory on the motherboard. An accelerator card for offloading antivirus search was another example. [5]

Torrenza was closely (though not exclusively) identified with HyperTransport technology promoted by the HyperTransport Consortium. AMD is a supporter and partner of the OpenFPGA Consortium. Technology elements of Torrenza were related to the AMD Fusion, later Accelerated Processing Unit, project, which targets the integration of graphics processing units (or other coprocessing functions) and CPU cores onto one chip. As a programmatic distinction, Torrenza refers to external acceleration technology (including graphics processing units in PCIe slots), while Fusion refers to integrated acceleration technology. It was rumored in 2007 that the future IBM POWER7 processors would be socket compatible with Opteron processors. [6] The IBM Roadrunner supercomputer connected thousands of Opteron cores to almost as many Cell Broadband Engines in an effort to reach 1  petaflop of processing power. However, it is not clear if this system configuration should be considered an example of a coprocessing architecture because the Opteron and Cell processors run independent operating systems and communicate using software-based message-passing protocols. Delivered in mid-2008, AMD was not expected to emphasize the Torrenza initiative from about that time. [7] It was not mentioned in a 2009 news release about the Roadrunner, for example. [8]

See also

Related Research Articles

<span class="mw-page-title-main">AMD</span> American semiconductor company

Advanced Micro Devices, Inc., commonly abbreviated as AMD, is an American multinational semiconductor company based in Santa Clara, California, that develops computer processors and related technologies for business and consumer markets.

HyperTransport (HT), formerly known as Lightning Data Transport, is a technology for interconnection of computer processors. It is a bidirectional serial/parallel high-bandwidth, low-latency point-to-point link that was introduced on April 2, 2001. The HyperTransport Consortium is in charge of promoting and developing HyperTransport technology.

<span class="mw-page-title-main">Opteron</span> Server and workstation processor line by Advanced Micro Devices

Opteron is AMD's x86 former server and workstation processor line, and was the first processor which supported the AMD64 instruction set architecture. It was released on April 22, 2003, with the SledgeHammer core (K8) and was intended to compete in the server and workstation markets, particularly in the same segment as the Intel Xeon processor. Processors based on the AMD K10 microarchitecture were announced on September 10, 2007, featuring a new quad-core configuration. The most-recently released Opteron CPUs are the Piledriver-based Opteron 4300 and 6300 series processors, codenamed "Seoul" and "Abu Dhabi" respectively.

<span class="mw-page-title-main">Front-side bus</span> Type of computer communication interface

The front-side bus (FSB) is a computer communication interface (bus) that was often used in Intel-chip-based computers during the 1990s and 2000s. The EV6 bus served the same function for competing AMD CPUs. Both typically carry data between the central processing unit (CPU) and a memory controller hub, known as the northbridge.

<span class="mw-page-title-main">Athlon 64</span> Series of CPUs by AMD

The Athlon 64 is a ninth-generation, AMD64-architecture microprocessor produced by Advanced Micro Devices (AMD), released on September 23, 2003. It is the third processor to bear the name Athlon, and the immediate successor to the Athlon XP. The second processor to implement the AMD64 architecture and the first 64-bit processor targeted at the average consumer, it was AMD's primary consumer CPU, and primarily competed with Intel's Pentium 4, especially the Prescott and Cedar Mill core revisions. It is AMD's first K8, eighth-generation processor core for desktop and mobile computers. Despite being natively 64-bit, the AMD64 architecture is backward-compatible with 32-bit x86 instructions. Athlon 64s have been produced for Socket 754, Socket 939, Socket 940, and Socket AM2. The line was succeeded by the dual-core Athlon 64 X2 and Athlon X2 lines.

<span class="mw-page-title-main">Coprocessor</span> Type of computer processor

A coprocessor is a computer processor used to supplement the functions of the primary processor. Operations performed by the coprocessor may be floating-point arithmetic, graphics, signal processing, string processing, cryptography or I/O interfacing with peripheral devices. By offloading processor-intensive tasks from the main processor, coprocessors can accelerate system performance. Coprocessors allow a line of computers to be customized, so that customers who do not need the extra performance do not need to pay for it.

<span class="mw-page-title-main">Mini-ITX</span> 17 × 17 cm motherboard

Mini-ITX is a 170 mm × 170 mm motherboard form factor developed by VIA Technologies in 2001. Mini-ITX motherboards have been traditionally used in small-configured computer systems. Originally, Mini-ITX was a niche standard designed for fanless cooling with a low power consumption architecture, which made them useful for home theater PC systems, where fan noise can detract from the cinema experience.

<span class="mw-page-title-main">CPU socket</span> Circuit board-microprocessor connection

In computer hardware, a CPU socket or CPU slot contains one or more mechanical components providing mechanical and electrical connections between a microprocessor and a printed circuit board (PCB). This allows for placing and replacing the central processing unit (CPU) without soldering.

<span class="mw-page-title-main">Socket 939</span> CPU socket for old AMD CPUs

Socket 939 is a CPU socket released by AMD in June 2004 to supersede the previous Socket 754 for Athlon 64 processors. Socket 939 was succeeded by Socket AM2 in May 2006. It is the second socket designed for AMD's AMD64 range of processors.

<span class="mw-page-title-main">Socket 754</span> CPU socket for old AMD CPUs

Socket 754 is a CPU socket originally developed by AMD to supersede its Athlon XP platform. Socket 754 was the first socket developed by AMD to support their new consumer version of the 64 bit microprocessor family known as AMD64.

AMD Cool'n'Quiet is a CPU dynamic frequency scaling and power saving technology introduced by AMD with its Athlon XP processor line. It works by reducing the processor's clock rate and voltage when the processor is idle. The aim of this technology is to reduce overall power consumption and lower heat generation, allowing for slower cooling fan operation. The objectives of cooler and quieter result in the name Cool'n'Quiet. The technology is similar to Intel's SpeedStep and AMD's own PowerNow!, which were developed with the aim of increasing laptop battery life by reducing power consumption.

<span class="mw-page-title-main">Socket AM2</span> CPU socket for old AMD CPUs

The Socket AM2, renamed from Socket M2, is a CPU socket designed by AMD for desktop processors, including the performance, mainstream and value segments. It was released on May 23, 2006, as a replacement for Socket 939.

The AMD Family 10h, or K10, is a microprocessor microarchitecture by AMD based on the K8 microarchitecture. The first third-generation Opteron products for servers were launched on September 10, 2007, with the Phenom processors for desktops following and launching on November 11, 2007 as the immediate successors to the K8 series of processors.

<span class="mw-page-title-main">Socket F</span> CPU socket for AMD server CPUs

Socket F is a CPU socket designed by AMD for its Opteron line of CPUs released on August 15, 2006. In 2010 Socket F was replaced by Socket C32 for entry-level servers and Socket G34 for high-end servers.

The AMD Quad FX platform is an AMD platform targeted at enthusiasts which allows users to plug two Socket F Athlon 64 FX or 2-way Opteron processors (CPUs) into a single motherboard for a total of four physical cores. This is a type of dual processor setup, where two CPUs are installed on a motherboard to increase computing power. The major difference between the platform and past dual processor systems like Xeon is that each processor has its own dedicated memory stores. The Quad FX platform also has HyperTransport capability targeted toward consumer platforms.

<span class="mw-page-title-main">Roadrunner (supercomputer)</span>

Roadrunner was a supercomputer built by IBM for the Los Alamos National Laboratory in New Mexico, USA. The US$100-million Roadrunner was designed for a peak performance of 1.7 petaflops. It achieved 1.026 petaflops on May 25, 2008, to become the world's first TOP500 LINPACK sustained 1.0 petaflops system.

The AMD 700 chipset series is a set of chipsets designed by ATI for AMD Phenom processors to be sold under the AMD brand. Several members were launched in the end of 2007 and the first half of 2008, others launched throughout the rest of 2008.

The AMD Bulldozer Family 15h is a microprocessor microarchitecture for the FX and Opteron line of processors, developed by AMD for the desktop and server markets. Bulldozer is the codename for this family of microarchitectures. It was released on October 12, 2011, as the successor to the K10 microarchitecture.

<span class="mw-page-title-main">Phenom II</span> Family of AMD multi-core 45 nm processors

Phenom II is a family of AMD's multi-core 45 nm processors using the AMD K10 microarchitecture, succeeding the original Phenom. Advanced Micro Devices released the Socket AM2+ version of Phenom II in December 2008, while Socket AM3 versions with DDR3 support, along with an initial batch of triple- and quad-core processors were released on February 9, 2009. Dual-processor systems require Socket F+ for the Quad FX platform. The next-generation Phenom II X6 was released on April 27, 2010.

Coherent Accelerator Processor Interface (CAPI), is a high-speed processor expansion bus standard for use in large data center computers, initially designed to be layered on top of PCI Express, for directly connecting central processing units (CPUs) to external accelerators like graphics processing units (GPUs), ASICs, FPGAs or fast storage. It offers low latency, high speed, direct memory access connectivity between devices of different instruction set architectures.

References

  1. "AMD Announces Initiatives To Elevate AMD64 As Platform For System- And Industry-Wide Innovation". News release. Advanced Micro Devices. June 1, 2006. Archived from the original on June 13, 2006. Retrieved May 29, 2011.
  2. Ashlee Vance (April 17, 2007). "High fiber diet gives Intel 'regularity' needed to beat AMD". The Register. Retrieved May 28, 2011.
  3. "AMD Announces Socket Compatibility Plans to Drive Industry Collaboration". News release. Advanced Micro Devices. September 21, 2006. Archived from the original on October 10, 2006. Retrieved May 29, 2011.
  4. "AMD's Torrenza Initiative: Creating a Community of Collaboration". Initiative web site. Advanced Micro Devices. Archived from the original on May 11, 2008. Retrieved May 29, 2011.
  5. Wolfgang Gruener (April 29, 2007). "AMD's Torrenza evolves into first real world applications". TG Daily. Retrieved May 29, 2011.
  6. "IBM Power 7 to be Opteron socket compatible: Mini Update While Big Blue pursues Itanium FUD campaign". The Inquirer.net. March 25, 2007. Archived from the original on August 27, 2009. Retrieved May 29, 2011.{{cite news}}: CS1 maint: unfit URL (link)
  7. Wolfgang Gruener (June 8, 2008). "Roadrunner: 130,536 cores break the Petaflop barrier". TG Daily. Retrieved May 29, 2011.
  8. "Most Powerful Supercomputer in the World Powered by the Six-Core AMD Opteron™ Processor". News release. Advanced Micro Devices. November 16, 2009. Retrieved May 29, 2011.