1964 in science

Last updated
List of years in science (table)
+...

The year 1964 in science and technology involved some significant events, listed below.

Contents

Astronomy and space exploration

Biology

Computer science

Earth sciences

History of science and technology

Mathematics

Paleontology

Physics

Physiology and medicine

Psychology

Technology

Publications

Awards

Births

Deaths

Related Research Articles

<span class="mw-page-title-main">Electroweak interaction</span> Unified description of electromagnetism and the weak interaction

In particle physics, the electroweak interaction or electroweak force is the unified description of two of the four known fundamental interactions of nature: electromagnetism (electromagnetic interaction) and the weak interaction. Although these two forces appear very different at everyday low energies, the theory models them as two different aspects of the same force. Above the unification energy, on the order of 246 GeV, they would merge into a single force. Thus, if the temperature is high enough – approximately 1015 K – then the electromagnetic force and weak force merge into a combined electroweak force. During the quark epoch (shortly after the Big Bang), the electroweak force split into the electromagnetic and weak force. It is thought that the required temperature of 1015 K has not been seen widely throughout the universe since before the quark epoch, and currently the highest human-made temperature in thermal equilibrium is around 5.5x1012 K (from the Large Hadron Collider).

<span class="mw-page-title-main">Standard Model</span> Theory of forces and subatomic particles

The Standard Model of particle physics is the theory describing three of the four known fundamental forces in the universe and classifying all known elementary particles. It was developed in stages throughout the latter half of the 20th century, through the work of many scientists worldwide, with the current formulation being finalized in the mid-1970s upon experimental confirmation of the existence of quarks. Since then, proof of the top quark (1995), the tau neutrino (2000), and the Higgs boson (2012) have added further credence to the Standard Model. In addition, the Standard Model has predicted various properties of weak neutral currents and the W and Z bosons with great accuracy.

<span class="mw-page-title-main">Charm quark</span> Type of quark

The charm quark, charmed quark, or c quark is an elementary particle of the second generation. It is the third-most-massive quark with a mass of 1.27±0.02 GeV/c2 as measured in 2022 and a charge of +2/3e. It carries charm, a quantum number. Charm quarks are found in hadrons such as the J/psi meson and the charmed baryons. Several bosons, including the W and Z bosons and the Higgs boson, can decay into charm quarks.

<span class="mw-page-title-main">Spontaneous symmetry breaking</span> Symmetry breaking through the vacuum state

Spontaneous symmetry breaking is a spontaneous process of symmetry breaking, by which a physical system in a symmetric state spontaneously ends up in an asymmetric state. In particular, it can describe systems where the equations of motion or the Lagrangian obey symmetries, but the lowest-energy vacuum solutions do not exhibit that same symmetry. When the system goes to one of those vacuum solutions, the symmetry is broken for perturbations around that vacuum even though the entire Lagrangian retains that symmetry.

<span class="mw-page-title-main">Peter Higgs</span> English physicist (born 1929)

Peter Ware Higgs is an English theoretical physicist, Emeritus Professor at the University of Edinburgh, and Nobel Prize laureate for his work on the mass of subatomic particles.

<span class="mw-page-title-main">Higgs mechanism</span> Mechanism that explains the generation of mass for gauge bosons

In the Standard Model of particle physics, the Higgs mechanism is essential to explain the generation mechanism of the property "mass" for gauge bosons. Without the Higgs mechanism, all bosons (one of the two classes of particles, the other being fermions) would be considered massless, but measurements show that the W+, W, and Z0 bosons actually have relatively large masses of around 80 GeV/c2. The Higgs field resolves this conundrum. The simplest description of the mechanism adds a quantum field (the Higgs field) which permeates all of space to the Standard Model. Below some extremely high temperature, the field causes spontaneous symmetry breaking during interactions. The breaking of symmetry triggers the Higgs mechanism, causing the bosons it interacts with to have mass. In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses for the W±, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron Collider at CERN announced results consistent with the Higgs particle on 14 March 2013, making it extremely likely that the field, or one like it, exists, and explaining how the Higgs mechanism takes place in nature. The view of the Higgs mechanism as involving spontaneous symmetry breaking of a gauge symmetry is technically incorrect since by Elitzur's theorem gauge symmetries can never be spontaneously broken. Rather, the Fröhlich–Morchio–Strocchi mechanism reformulates the Higgs mechanism in an entirely gauge invariant way, generally leading to the same results.

The Alternative models to the Standard Higgs Model are models which are considered by many particle physicists to solve some of the Higgs boson's existing problems. Two of the most currently researched models are quantum triviality, and Higgs hierarchy problem.

<span class="mw-page-title-main">Tom Kibble</span> British physicist

Sir Thomas Walter Bannerman Kibble was a British theoretical physicist, senior research investigator at the Blackett Laboratory and Emeritus Professor of Theoretical Physics at Imperial College London. His research interests were in quantum field theory, especially the interface between high-energy particle physics and cosmology. He is best known as one of the first to describe the Higgs mechanism, and for his research on topological defects. From the 1950s he was concerned about the nuclear arms race and from 1970 took leading roles in promoting the social responsibility of the scientist.

<span class="mw-page-title-main">History of quantum field theory</span>

In particle physics, the history of quantum field theory starts with its creation by Paul Dirac, when he attempted to quantize the electromagnetic field in the late 1920s. Major advances in the theory were made in the 1940s and 1950s, leading to the introduction of renormalized quantum electrodynamics (QED). The field theory behind QED was so accurate and successful in predictions that efforts were made to apply the same basic concepts for the other forces of nature. Beginning in 1954, the parallel was found by way of gauge theory, leading by the late 1970s, to quantum field models of strong nuclear force and weak nuclear force, united in the modern Standard Model of particle physics.

<span class="mw-page-title-main">Benjamin W. Lee</span> Korean-born American theoretical physicist

Benjamin Whisoh Lee, or Ben Lee, was a Korean- American theoretical physicist. His work in theoretical particle physics exerted great influence on the development of the standard model in the late 20th century, especially on the renormalization of the electro-weak model and gauge theory.

The J. J. Sakurai Prize for Theoretical Particle Physics, is presented by the American Physical Society at its annual April Meeting, and honors outstanding achievement in particle physics theory. The prize consists of a monetary award (US$10,000), a certificate citing the contributions recognized by the award, and a travel allowance for the recipient to attend the presentation. The award is endowed by the family and friends of particle physicist J. J. Sakurai. The prize has been awarded annually since 1985.

<span class="mw-page-title-main">Gerald Guralnik</span>

Gerald Stanford "Gerry" Guralnik was the Chancellor’s Professor of Physics at Brown University. In 1964 he co-discovered the Higgs mechanism and Higgs boson with C. R. Hagen and Tom Kibble (GHK). As part of Physical Review Letters' 50th anniversary celebration, the journal recognized this discovery as one of the milestone papers in PRL history. While widely considered to have authored the most complete of the early papers on the Higgs theory, GHK were controversially not included in the 2013 Nobel Prize in Physics.

<span class="mw-page-title-main">François Englert</span> Belgian theoretical physicist

François, Baron Englert is a Belgian theoretical physicist and 2013 Nobel Prize laureate.

The timeline of particle physics lists the sequence of particle physics theories and discoveries in chronological order. The most modern developments follow the scientific development of the discipline of particle physics.

<span class="mw-page-title-main">C. R. Hagen</span>

Carl Richard Hagen is a professor of particle physics at the University of Rochester. He is most noted for his contributions to the Standard Model and Symmetry breaking as well as the 1964 co-discovery of the Higgs mechanism and Higgs boson with Gerald Guralnik and Tom Kibble (GHK). As part of Physical Review Letters 50th anniversary celebration, the journal recognized this discovery as one of the milestone papers in PRL history. While widely considered to have authored the most complete of the early papers on the Higgs theory, GHK were controversially not included in the 2013 Nobel Prize in Physics.

<span class="mw-page-title-main">Robert Brout</span> American physicist (1928–2011)

Robert Brout was an American theoretical physicist who made significant contributions in elementary particle physics. He was a professor of physics at Université Libre de Bruxelles where he had created, together with François Englert, the Service de Physique Théorique.

<i>The God Particle</i> (book) Book by Leon M. Lederman

The God Particle: If the Universe Is the Answer, What Is the Question? is a 1993 popular science book by Nobel Prize-winning physicist Leon M. Lederman and science writer Dick Teresi.

<span class="mw-page-title-main">Higgs boson</span> Elementary particle

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in particle physics theory. In the Standard Model, the Higgs particle is a massive scalar boson with zero spin, even (positive) parity, no electric charge, and no colour charge that couples to mass. It is also very unstable, decaying into other particles almost immediately upon generation.

The 1964 PRL symmetry breaking papers were written by three teams who proposed related but different approaches to explain how mass could arise in local gauge theories. These three papers were written by: Robert Brout and François Englert; Peter Higgs; and Gerald Guralnik, C. Richard Hagen, and Tom Kibble (GHK). They are credited with the theory of the Higgs mechanism and the prediction of the Higgs field and Higgs boson. Together, these provide a theoretical means by which Goldstone's theorem can be avoided. They show how gauge bosons can acquire non-zero masses as a result of spontaneous symmetry breaking within gauge invariant models of the universe.

References

  1. In a brief paper by Soviet astrophysicists A. G. Doroshkevich and Igor Novikov. Penzias, A. A. (2006). "The origin of elements" (PDF). Nobel lecture. Nobel Foundation . Retrieved 2006-10-04.
  2. "Largest Earthquakes in the World Since 1900". U.S. Geological Survey. 2012-07-18. Archived from the original on 2010-11-07. Retrieved 2012-09-05.
  3. "Mission & History". National Museum of American History. March 2012. Retrieved 2018-02-14.
  4. Crilly, T. (2007). 50 Mathematical Ideas you really need to know. Quercus. p. 73. ISBN   978-1-84724-008-8.
  5. Tits, J. (1964). "Algebraic and abstract simple groups". Annals of Mathematics . Second Series. 80 (2): 313–329. doi:10.2307/1970394. JSTOR   1970394. MR   0164968.
  6. Ostrom, J. H. (1969). "Osteology of Deinonychus antirrhopus, an unusual theropod from the Lower Cretaceous of Montana". Peabody Museum of Natural History Bulletin. 30: 1–165.
  7. Englert, F.; Brout, R. (1964). "Broken Symmetry and the Mass of Gauge Vector Mesons". Physical Review Letters . 13 (9): 321–323. Bibcode:1964PhRvL..13..321E. doi: 10.1103/PhysRevLett.13.321 .
  8. Brout, R.; Englert, F. (1998). "Spontaneous Symmetry Breaking in Gauge Theories: A Historical Survey". arXiv: hep-th/9802142 .
  9. Higgs, P. W. (1964). "Broken Symmetries and the Masses of Gauge Bosons". Physical Review Letters . 13 (16): 508–509. Bibcode:1964PhRvL..13..508H. doi: 10.1103/PhysRevLett.13.508 .
  10. Guralnik, G. S.; Hagen, C. R.; Kibble, T. W. B. (1964). "Global Conservation Laws and Massless Particles". Physical Review Letters . 13 (20): 585–587. Bibcode:1964PhRvL..13..585G. doi: 10.1103/PhysRevLett.13.585 .
  11. Guralnik, G. S. (2009). "The History of the Guralnik, Hagen and Kibble development of the Theory of Spontaneous Symmetry Breaking and Gauge Particles". International Journal of Modern Physics A . 24 (14): 2601–2627. arXiv: 0907.3466 . Bibcode:2009IJMPA..24.2601G. doi:10.1142/S0217751X09045431. S2CID   16298371.
  12. Kibble, T. W. B. (2009). "Englert–Brout–Higgs–Guralnik–Hagen–Kibble mechanism". Scholarpedia . 4 (1): 6441. Bibcode:2009SchpJ...4.6441K. doi: 10.4249/scholarpedia.6441 .
  13. Physical Review Letters 50th Anniversary Milestone Papers.
  14. Bjørken, B. J.; Glashow, S. L. (1964). "Elementary particles and SU(4)". Physics Letters . 11 (3): 255–257. Bibcode:1964PhL....11..255B. doi:10.1016/0031-9163(64)90433-0.
  15. Bell, John S. (1964). "On the Einstein Podolsky Rosen Paradox". Physics Physique Физика . 1 (3): 195–200. doi: 10.1103/PhysicsPhysiqueFizika.1.195 .
  16. Dotter, C. T.; Judkins, M. P. (1964). "Transluminal Treatment of Arteriosclerotic Obstruction: Description of a New Technic and a Preliminary Report of Its Application". Circulation . 30 (5): 654–670. doi: 10.1161/01.CIR.30.5.654 . PMID   14226164.
  17. Rösch, J.; Keller, F. S.; Kaufman, J. A. (2003). "The Birth, Early Years, and Future of Interventional Radiology". Journal of Vascular and Interventional Radiology. 14 (7): 841–853. doi:10.1097/01.RVI.0000083840.97061.5b. PMID   12847192.
  18. Epstein, M. A.; Achong, B. G.; Barr, Y. M. (1964-03-28). "Virus particles in cultured lymphoblasts from Burkitt's lymphoma". The Lancet . 1 (7335): 702–703. doi:10.1016/S0140-6736(64)91524-7. PMID   14107961.
  19. Foster, G. V.; Baghdiantz, A.; Kumar, M. A.; Slack, E.; Soliman, H. A.; MacIntyre, I. (1964). "Thyroid origin of Calcitonin" . Nature . 202 (4939): 1303–1305. Bibcode:1964Natur.202.1303F. doi:10.1038/2021303a0. PMID   14210962. S2CID   2443410.
  20. Martins, F. A. (30 June 2009). "O Endoscópio". Fernando Alves Martins' Blog (in Portuguese). Retrieved 2012-02-07.
  21. Moog, R. A. (1965). "Voltage-Controlled Electronic Music Modules". Journal of the Audio Engineering Society. 13 (3): 200–206.
  22. Yale University Press.
  23. "See ECN Expert". South East European University. Archived from the original on 18 October 2010. Retrieved 18 July 2014.
  24. "Jennifer Doudna | American biochemist". Encyclopedia Britannica. Retrieved 7 October 2020.