Aerophobota

Last updated

Aerophobota
Scientific classification
Domain:
Phylum:
"Aerophobota"
corrig. Rinke et al., 2013
Class
  • "Aerophobia"
Synonyms
  • "Candidatus Aerophobetes"
  • candidate division CD12

Aerophobota is a candidate bacterial phylum within the domain Bacteria. This phylum is found mainly in deep-sea, hydrocarbon-rich sediments, especially those associated with methane hydrates. Aerophobota is notable for its likely involvement in organic carbon and methane cycling in anoxic, deep ocean sediment environments. [1]

Contents

Taxonomy

The classification is based on genomic and metagenomic data without cultured isolates, and the name is not yet validly published under formal bacterial nomenclature. [1] [2] [3]

Ecology and function

Aerophobetes are abundant in hydrate-containing, silty sediment layers beneath the ocean floor and thrive in anoxic (oxygen-free) conditions. [4] Genetic analyses suggest they ferment organic matter, producing hydrogen and acetate, which can then be used by syntrophic methanogenic archaea to generate methane. [5] These metabolic interactions indicate Aerophobota's likely contribution to methane formation and carbon cycling in deep-sea ecosystems. [6] [7]

Environmental and biotechnological importance

Research into Aerophobota and its functional roles is of interest because methane is a potent greenhouse gas. [8] Understanding these microbes could inform strategies for mitigating methane emissions from seafloor hydrates. [9]

See also

References

  1. 1 2 Rinke, C; Schwientek, P; Sczyrba, A; Ivanova, NN; Anderson, IJ; Cheng, JF; Darling, AE; Malfatti, S; Swan, BK; Gies, EA; Dodsworth, JA; Hedlund, BP; Tsiamis, G; Sievert, SM; Liu, WT; Eisen, JA; Hallam, SJ; Kyrpides, NC; Stepanauskas, R; Rubin, EM; Hugenholtz, P; Woyke, T (2013). "Insights into the phylogeny and coding potential of microbial dark matter". Nature. 499 (7459): 431–437. Bibcode:2013Natur.499..431R. doi:10.1038/nature12352. PMID   23851394 . Retrieved 12 November 2025.
  2. Aerophobota in LPSN ; Freese, H. M.; Meier-Kolthoff, J. P.; Sardà Carbasse, J.; Afolayan, A. O.; Göker, M. (29 October 2025). "TYGS and LPSN in 2025: a Global Core Biodata Resource for genome-based classification and nomenclature of prokaryotes within DSMZ Digital Diversity". Nucleic Acids Research. 53: D1 –D12. doi:10.1093/nar/gkaf1110.
  3. Schoch CL; et al. "Aerophobota". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2025-06-05.
  4. Begmatov, Shahjahon; Savvichev, Alexander S.; Kadnikov, Vitaly V.; Beletsky, Alexey V.; Rusanov, Igor I.; Klyuvitkin, Alexey A.; Novichkova, Ekaterina A.; Mardanov, Andrey V.; Pimenov, Nikolai V.; Ravin, Nikolai V. (2021). "Microbial Communities Involved in Methane, Sulfur, and Nitrogen Cycling in the Sediments of the Barents Sea". Microorganisms. 9 (11): 2362. Bibcode:2021Miorg...9.2362B. doi: 10.3390/microorganisms9112362 . PMC   8625253 . PMID   34835487.
  5. Wang, Yong; Gao, Zhao-Ming; Li, Jiang-Tao; Bougouffa, Salim; Tian, Renmao; Bajic, Vladimir B.; Qian, Pei-Yuan (2016). "Draft genome of an Aerophobetes bacterium reveals a facultative lifestyle in deep-sea anaerobic sediments". Science Bulletin. 61 (15): 1176–1186. Bibcode:2016SciBu..61.1176W. doi:10.1007/s11434-016-1135-6 . Retrieved 12 November 2025.
  6. Liu, Siwei; Yu, Shan; Lu, Xindi; Yang, Hailin; Li, Yuanyuan; Xu, Xuemin; Lu, Hailong; Fang, Yunxin (2022). "Microbial communities associated with thermogenic gas hydrate-bearing marine sediments in Qiongdongnan Basin, South China Sea". Frontiers in Microbiology. 13 1032851. doi: 10.3389/fmicb.2022.1032851 . PMC   9640435 . PMID   36386663.
  7. Mara, Paraskevi; Geller-McGrath, David; Edgcomb, Virginia; Beaudoin, David; Morono, Yuki; Teske, Andreas P. (2023). "Metagenomic profiles of archaea and bacteria within thermal and geochemical gradients of the Guaymas Basin deep subsurface". Nature Communications. 14 (1) 7768: 7767. Bibcode:2023NatCo..14.7768M. doi:10.1038/s41467-023-43296-x. PMC   10689907 . PMID   38012208 . Retrieved 12 November 2025.
  8. Conrad, Ralf (2009). "The global methane cycle: recent advances in understanding the microbial processes involved". Environmental Microbiology Reports. 1 (5): 285–292. Bibcode:2009EnvMR...1..285C. doi:10.1111/j.1758-2229.2009.00038.x. PMID   23765881 . Retrieved 12 November 2025.
  9. Boetius, Antje; Wenzhöfer, Frank (2013). "Seafloor oxygen consumption fuelled by methane from cold seeps". Nature Geoscience. 6 (9): 725–734. Bibcode:2013NatGe...6..725B. doi:10.1038/ngeo1926 . Retrieved 12 November 2025.