Drumheller Channels National Natural Landmark

Last updated
Drumheller Channels
Drum-Heller-Channels.jpg
Drumheller Channels
Locationsouth central Washington (state)
Coordinates 46°58′30″N119°11′47″W / 46.97500°N 119.19639°W / 46.97500; -119.19639
Designated1986

Drumheller Channels National Natural Landmark showcases the Drumheller Channels, which are the most significant example in the Columbia Plateau of basalt butte-and-basin Channeled Scablands. This National Natural Landmark is an extensively eroded landscape, located in south central Washington state characterized by hundreds of isolated, steep-sided hills (buttes) surrounded by a braided network of numerous channels, all but one of which are currently dry. It is a classic example of the tremendous erosive powers of extremely large floods such as those that reformed the Columbia Plateau volcanic terrain during the late Pleistocene glacial Missoula Floods. [1] [2] [3] [4]

Contents

In 1986, the U.S. National Park Service recognized the significance and natural beauty of Drumheller Channels by designating them a National Natural Landmark. The geologist who initially recognized and documented the evidence for the Ice-Age floods, J Harlen Bretz, wrote:

Drumheller is the most spectacular tract of butte-and basin scabland on the plateau. It is an almost unbelievable labyrinth of anastamosing channels, rock basins, and small abandoned cataracts. [3]

Drumheller Channels connects the Quincy Basin, which lies to north, with the Othello Basin on the south. It can be reached most easily from Othello, Washington approximately 8 km (5.0 mi) northwest on McManamon Road, then north on Morgan Lake Road which passes through the Drumheller Channels region. The north/south Morgan Lake Road (gravel) passes through the heart of the channels following Crab Creek. Hikes can be taken, including an interpretive trail, from the wetlands along Crab Creek to the views from an isolated butte, that allow the hiker to gain a sense of this unique landscape. The Drumheller Channels can also be seen from the paved State Route 262 which runs to the north of the area along the top of the Potholes Reservoir dam (which has inundated part of the scablands) and from the west side from the heights of the Frenchman Hills. [4]

Etymology

The Drumheller Channels are named for the humble, impoverished, farming family that, in 1922, gave basic over-night hospitality to J Harlen Bretz and his three students who were mapping the area on foot. [5] [6]

Route of the ancient Columbia River

Ice Age Floods Institute tour of the Drumheller Channels - note the two people in the foreground and the group in the background that provide perspective in the large-scale erosion here. Drumheller Channels National Natural Landmark.jpg
Ice Age Floods Institute tour of the Drumheller Channels note the two people in the foreground and the group in the background that provide perspective in the large-scale erosion here.

The Okanogan lobe of the Cordilleran Glacier moved down the Okanogan River valley and blocked the ancient route of the Columbia River, backing up water to create Lake Spokane. Initially water discharged from Lake Spokane by running up through the head of Grand Coulee and down through Foster Coulee to rejoin the Columbia River. As the glacier moved further south, Foster Coulee was cut off and the Columbia River then discharged through Moses Coulee, which runs southward slightly to the east of the ancient and current course of the Columbia. As the Okanogan lobe grew, it blocked Moses Coulee as well; the Columbia found the next lowest route through the region which was eroded to become the modern Grand Coulee. Flowing across the current Grand Coulee & Dry Falls regions, the ice age Columbia then entered the Quincy Basin & joined Crab Creek, following Crab Creek’s course southward past the Frenchman Hills and turning west to run along the north face of the Saddle Mountains & rejoin the previous and modern course of the Columbia River just above the main water gap in the Saddle Mountains, Sentinel Gap. [4]

Formation of the Drumheller Channels

The Missoula Floods discharged into Lake Spokane, through the Grand Coulee, greatly enlarging it, passed over Dry Falls and then ponded in and inundated the Quincy Basin, covering over 1500 km2 (585 mi2) and creating the Ephrata Fan (a deposit of boulders, cobbles, and pebbles where the flood waters discharged into the basin). The discharge volume was so great that water overflowed Lake Spokane in multiple places & also reached the Quincy Basin via the Telford-Crab Creek scablands and Lind Coulee (both entering the basin from the east). When floodwaters encountered the Frenchman Hills, their level was high enough that, although the bulk of the water passed through the Crab Creek drainage, some water spilled west over the low points of three divides along Evergreen and Babcock ridges to reach the Columbia river channel at Frenchman Coulee to the southwest, Potholes Coulee to the north central and Crater Coulee to the northwest. The bulk of the floodwaters took the easiest path, straight south through the Drumheller Channels stretch of Crab Creek. [4] [7]

The elevation drop of the floodwaters as they passed through the Drumheller Channels was greater than 50 meters (160 ft) over a distance of 20 km (12 mi) with gradients locally ranging from 2–12 m/km). This hydraulic head combined with a flow depth of from 60 to 120 meters (200 – 400 ft) provided the energy to achieve flood flow velocities as high as 30 m/s (65 mph), which eroded the topsoil and underlying basalt, gouging the complex network of channels, basins, potholes and buttes that are found there even today. Examples of scabland features, such as large kolk-excavated potholes, provide evidence of the tremendous powers of the floods. [7]

There is a unique character to the Drumheller Channels; unlike most other Channeled Scabland zones, no single centralized channel or major cataracts were formed. In the Drumheller Channels the floodwaters passing through in a broad cascade of 13 – 20 km (8 to 12 miles) in width. Bretz recorded 150 distinct channels and over 180 rock basins in this region. Many of the low areas, including Upper Goose Lake, are filled by water seeping in through cracks in the basalt bedrock, which are connected with Potholes Reservoir to the north. [7]

Impacts of early settlement

The impact of settlement was severe; in the 1860s overgrazing depleted most of the few native grasses. Government surveys of the 1880s identified much of the region as badlands. [8]

Bureau of Reclamation actions

In 1934, the U.S. Bureau of Reclamation initiated construction on the Grand Coulee Dam on the Columbia River about 100 miles (200 km) north of the Drumheller Channels. Grand Coulee was only one part of the Columbia Basin Project, which included four major storage reservoirs, hundreds of pumping plants, 2,300 miles (3,700 km) of canals and laterals to irrigate the region. Irrigation began in 1951, raising the water table. By 1980, when the last stage of the project was completed, the area of wetlands in the Columbia Basin was at least 20 times larger than it had been earlier as a result of seepage and a raised water table. Migrating waterfowl were drawn to the region by the water and by greatly increased food supplies from the adjacent farmlands. [8]

Columbia National Wildlife Refuge

The Columbia National Wildlife Refuge is colocated with the Drumheller Channels. Adjacent areas are included in the Seep Lakes Wildlife Area. More than 200 species of mammals and birds can be found in the cliffs, marshes, grasslands, lakes, seeps, and other riparian areas. [4] [9]

Related Research Articles

<span class="mw-page-title-main">Missoula floods</span> Heavy floods of the last ice age

The Missoula floods were cataclysmic glacial lake outburst floods that swept periodically across eastern Washington and down the Columbia River Gorge at the end of the last ice age. These floods were the result of periodic sudden ruptures of the ice dam on the Clark Fork River that created Glacial Lake Missoula. After each ice dam rupture, the waters of the lake would rush down the Clark Fork and the Columbia River, flooding much of eastern Washington and the Willamette Valley in western Oregon. After the lake drained, the ice would reform, creating Glacial Lake Missoula again.

<span class="mw-page-title-main">Grand Coulee</span> Ancient river bed in the U.S. state of Washington

Grand Coulee is an ancient river bed in the U.S. state of Washington. This National Natural Landmark stretches for about 60 miles (100 km) southwest from Grand Coulee Dam to Soap Lake, being bisected by Dry Falls into the Upper and Lower Grand Coulee.

<span class="mw-page-title-main">Channeled Scablands</span> Landscape in eastern Washington state scoured by cataclysmic floods during the Pleistocene epoch

The Channeled Scablands are a relatively barren and soil-free region of interconnected relict and dry flood channels, coulees and cataracts eroded into Palouse loess and the typically flat-lying basalt flows that remain after cataclysmic floods within the southeastern part of Washington state. The Channeled Scablands were scoured by more than 40 cataclysmic floods during the Last Glacial Maximum and innumerable older cataclysmic floods over the last two million years. These floods were periodically unleashed whenever a large glacial lake broke through its ice dam and swept across eastern Washington and down the Columbia River Plateau during the Pleistocene epoch. The last of the cataclysmic floods occurred between 18,200 and 14,000 years ago.

<span class="mw-page-title-main">J Harlen Bretz</span> American geologist who discovered the Missoula Floods

J Harlen Bretz was an American geologist, best known for his research that led to the acceptance of the Missoula Floods and for his work on caves.

<span class="mw-page-title-main">Palouse River</span> River in Idaho, United States

The Palouse River is a tributary of the Snake River in Washington and Idaho, in the northwest United States. It flows for 167 miles (269 km) southwestwards, primarily through the Palouse region of southeastern Washington. It is part of the Columbia River Basin, as the Snake River is a tributary of the Columbia River.

<span class="mw-page-title-main">Dry Falls</span> Scalloped precipice with four major alcoves, in central Washington scablands

Dry Falls is a 3.5-mile-long (5.6 km) scalloped precipice with four major alcoves, in central Washington scablands. This cataract complex is on the opposite side of the Upper Grand Coulee from the Columbia River, and at the head of the Lower Grand Coulee, northern end of Lenore Canyon. According to the current geological model, catastrophic flooding channeled water at 65 miles per hour through the Upper Grand Coulee and over this 400-foot (120 m) rock face at the end of the last glaciation. It is estimated that the falls were five times the width of Niagara Falls, with ten times the flow of all the current rivers in the world combined.

<span class="mw-page-title-main">Touchet Formation</span> Geological formation in Washington, US

The Touchet Formation or Touchet beds consist of well-bedded, coarse to fine sand and silt which overlays local bedrock composed of Neogene basalt of the Columbia River Basalt Group in south-central Washington and north-central Oregon. The beds consist of more than 40 to 62 distinct rhythmites – horizontal layers of sediment, each clearly demarcated from the layer below. These Touchet beds are often covered by windblown loess which were deposited later; the number of layers varies with location. The beds vary in thickness from 330 ft (100 m) at lower elevations where a number of layers can be found to a few extremely thin layers at the maximum elevation where they are observed.

<span class="mw-page-title-main">Sims Corner Eskers and Kames</span>

Sims Corner Eskers and Kames National Natural Landmark of Douglas County, Washington and nearby McNeil Canyon Haystack Rocks and Boulder Park natural landmarks contain excellent examples of Pleistocene glacial landforms. Sims Corner Eskers and Kames National Natural Landmark includes classic examples of ice stagnation landforms such as glacial erratics, terminal moraines, eskers, and kames. It is located on the Waterville Plateau of the Columbia Plateau in north central Washington state in the United States.

<span class="mw-page-title-main">Moses Coulee</span> Canyon in the Waterville plateau region of Douglas County, Washington

Moses Coulee is a canyon in the Waterville plateau region of Douglas County, Washington. Moses Coulee is the second-largest and westernmost canyon of the Channeled Scablands, located about 30 kilometres (19 mi) to the west of the larger Grand Coulee. This water channel is now dry, but during glacial periods, large outburst floods with discharges greater than 600,000 m3/s (21,000,000 cu ft/s) carved the channel. While it's clear that glacial floodwaters passed through and contributed to the erosion of Moses Coulee, the age of those waters, thus the origins of the coulee are less clear. No clear connection between the head of the coulee and major flood routes to the north, east, or west is known. Some researchers propose that floods from glacial Lake Missoula formed Moses Coulee, while others suggest that subglacial floods from the Okanogan Lobe incised the canyon. The mouth of Moses Coulee discharges into the Columbia River.

<span class="mw-page-title-main">Withrow Moraine and Jameson Lake Drumlin Field</span> United States National Natural Landmark in Douglas County, Washington

The Withrow Moraine and Jameson Lake Drumlin Field is a National Park Service–designated privately owned National Natural Landmark located in Douglas County, Washington state, United States. Withrow Moraine is the only Ice Age terminal moraine on the Waterville Plateau section of the Columbia Plateau. The drumlin field includes excellent examples of glacially-formed elongated hills.

<span class="mw-page-title-main">Crab Creek</span> River in Washington, United States

Crab Creek is a stream in the U.S. state of Washington. Named for the presence of crayfish, it is one of the few perennial streams in the Columbia Basin of central Washington, flowing from the northeastern Columbia River Plateau, roughly 5 km (3.1 mi) east of Reardan, west-southwest to empty into the Columbia River near the small town of Beverly. Its course exhibits many examples of the erosive powers of extremely large glacial Missoula Floods of the late Pleistocene, which scoured the region. In addition, Crab Creek and its region have been transformed by the large-scale irrigation of the Bureau of Reclamation's Columbia Basin Project (CBP), which has raised water table levels, significantly extending the length of Crab Creek and created new lakes and streams.

<span class="mw-page-title-main">Saddle Mountains</span>

The Saddle Mountains consists of an upfolded anticline ridge of basalt in Grant County of central Washington state. The ridge, reaching to 2,700 feet, terminates in the east south of Othello, Washington near the foot of the Drumheller Channels. It continues to the west where it is broken at Sentinel Gap before ending in the foothills of the Cascade Mountains.

<span class="mw-page-title-main">Umtanum Ridge Water Gap</span> Geologic feature in Washington, United States

Umtanum Ridge Water Gap is a geologic feature in Washington state in the United States. It includes the Yakima Canyon, and is located between the cities of Ellensburg and Yakima in central Washington. Washington State Route 821 was once the main route between Ellensburg and Yakima. The old highway still runs close to the river through the canyon, with Interstate 82 currently carrying most traffic between Ellensburg and Yakima on large bridges nearby.

<span class="mw-page-title-main">Columbia Plateau Trail</span> Trail in Washington state, US

The Columbia Plateau State Park Trail is a 130-mile-long (210 km), 20-foot-wide (6.1 m) corridor in eastern Washington state maintained as part of the Washington State Park system. The rail trail runs along the abandoned right-of-way of the former Spokane, Portland and Seattle Railway.

<span class="mw-page-title-main">Columbia Plateau (ecoregion)</span> Xeric shrubland ecoregion of Canada and the United States

The Columbia Plateau ecoregion is a Level III ecoregion designated by the United States Environmental Protection Agency (EPA) encompassing approximately 32,100 square miles (83,139 km2) of land within the U.S. states of Washington, Oregon, and Idaho. The ecoregion extends across a wide swath of the Columbia River Basin from The Dalles, Oregon to Lewiston, Idaho to Okanogan, Washington near the Canada–U.S. border. It includes nearly 500 miles (800 km) of the Columbia River, as well as the lower reaches of major tributaries such as the Snake and Yakima rivers and the associated drainage basins. It is named for the Columbia Plateau, a flood basalt plateau formed by the Columbia River Basalt Group during the late Miocene and early Pliocene. The arid sagebrush steppe and grasslands of the region are flanked by moister, predominantly forested, mountainous ecoregions on all sides. The underlying basalt is up to 2 miles (3 km) thick and partially covered by thick loess deposits. Where precipitation amounts are sufficient, the deep loess soils have been extensively cultivated for wheat. Water from the Columbia River is subject to resource allocation debates involving fisheries, navigation, hydropower, recreation, and irrigation, and the Columbia Basin Project has dramatically converted much of the region to agricultural use.

<span class="mw-page-title-main">Ice Age Floods National Geologic Trail</span> Network of routes connecting natural sites

The Ice Age Floods National Geologic Trail is a network of routes connecting natural sites and facilities that provide interpretation of the geological consequences of the Glacial Lake Missoula floods of the last glacial period that occurred about 18,000 to 15,000 years ago. It includes sites in Washington, Oregon, Idaho, and Montana. It was designated as the first National Geologic Trail in the United States in 2009.

<span class="mw-page-title-main">Columbia National Wildlife Refuge</span> Wildlife refuge in Washington, U.S.

Columbia National Wildlife Refuge is a scenic mixture of rugged cliffs, canyons, lakes, and sagebrush grasslands. Formed by fire, ice, floods, and volcanic tempest, carved by periods of extreme violence of natural forces, the refuge lies in the middle of the Drumheller Channeled Scablands of central Washington. The area reveals a rich geologic history highlighted by periods of dramatic activity, each playing a major role in shaping the land. The northern half of the refuge, south of Potholes Reservoir, is a rugged jumble of cliffs, canyons, lakes, and remnants of lava flows. This part of the Scablands, known as the Drumheller Channels, is the most spectacularly eroded area of its size in the world and was designated as a National Natural Landmark in 1986.

<span class="mw-page-title-main">Glacial Lake Columbia</span> Former lake in North America

Glacial Lake Columbia was the lake formed on the ice-dammed Columbia River behind the Okanogan lobe of the Cordilleran Ice Sheet when the lobe covered 500 square miles (1,300 km2) of the Waterville Plateau west of Grand Coulee in central Washington state during the Wisconsin glaciation. Lake Columbia was a substantially larger version of the modern-day lake behind the Grand Coulee Dam. Lake Columbia's overflow – the diverted Columbia River – drained first through Foster Coulee, and as the ice dam grew, then through Moses Coulee, and finally, the Grand Coulee.

Foster Coulee is a coulee in Douglas County, Washington. Like the larger Moses Coulee nearby, it was formed during the Missoula Floods at the end of the last ice age, some 14,000 years ago.

<span class="mw-page-title-main">Royal Slope AVA</span> Viticultural area in Washington, USA

Royal Slope is an American Viticultural Area (AVA) located within Adams and Grant Counties in central Washington state. Royal Slope is the state's 15th appellation recognized by the Alcohol and Tobacco Tax and Trade Bureau {TTB), Treasury on October 2, 2020, after reviewing the petition submitted by Alan Busacca, a licensed geologist and founder of Vinitas Vineyard Consultants, LLC, on behalf of the Royal Slope Wine Grower's Association, proposing the viticultural area named “Royal Slope.” The AVA lies between the Quincy Basin and Saddle Mountains surrounding the town of Royal City encompassing 156,389 acres (244 sq mi) entirely within the vast Columbia Valley AVA. There are currently 13 producing commercial vineyards cultivating approximately 14,100 acres (5,706 ha) with only one winery. According to the petition, the distinguishing features of the Royal Slope AVA are its climate, topography, geology, and soils.

References

  1. Alt, David (2001). Glacial Lake Missoula & its Humongous Floods. Mountain Press Publishing Company. ISBN   0-87842-415-6.
  2. Bjornstad, Bruce (2006). On the Trail of the Ice Age Floods: A Geological Guide to the Mid-Columbia Basin. Keokee Books; San Point, Idaho. ISBN   978-1-879628-27-4.
  3. 1 2 J Harlen Bretz, (1923), The Channeled Scabland of the Columbia Plateau. Journal of Geology, v.31, p.617-649
  4. 1 2 3 4 5 Mueller, Ted and Marge (1997). Fire, Faults & Floods . University of Idaho Press, Moscow, Idaho. ISBN   0-89301-206-8.
  5. Zentner, 2020, ‘Nick From Home’ #17 - J Harlen Bretz.
  6. Nick Zentner, Dec 19 2019, #30 Bretz's Field Evidence
  7. 1 2 3 Baker, V.R. 1973, Paleohydrology and Sedimentology of Lake Missoula Flooding in Eastern Washington: Geological Society of America Special Paper 144)
  8. 1 2 Columbia National Wildlife Refuge by the Online Encyclopedia of Washington State History
  9. Columbia National Wildlife Refuge Archived 2018-09-30 at the Wayback Machine .