Epixenosomes

Last updated

Epixenosomes
TEM - Epixenosomes.jpg
Transmission electron micrograph of stage II epixenosomes.
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Verrucomicrobiota
Class: Opitutae
Order: Puniceicoccales
Family: Puniceicoccaceae
Genus: Epixenosoma
Bauer Aet al. 2005
Type species
"Ca. Epixenosoma ejectans"
Bauer Aet al. 2005
Species
  • " Ca. Epixenosoma ejectans"

Epixenosomes, also known as Candidatus Epixenosoma, are a genus of bacteria in the phylum Verrucomicrobiota that form a symbiosis with marine ciliates of the genus Euplotidium , where they help to defend their ciliate hosts against predators. It is a monospecific genus, containing only the species Ca. Epixenosoma ejectans.

Contents

Description

Epixenosomes possess two distinct developmental phases linked to the host cell cycle. Stage I epixenosomes are spherical, 0.5 μm in diameter and are surrounded by two membranes. They divide by direct binary fission. Stage II epixenosomes are egg-shaped (2.2 μm in length and 1 μm in width) and show complex organization with different cytoplasmic compartments, more complicated than the majority of prokaryotic organisms. They contain an extrusive apparatus within a proteinaceous matrix, although apparently not membrane-bound, which differs from the remaining cytoplasm. A functional cell compartmentalization has also been evidenced. [1]

Their phylogenetic position was originally unclear, because they appeared to have both prokaryote-like traits, such as binary fission, and eukaryote-like traits, such as intracellular membranes. [1] However, molecular phylogenetics showed that they are actually bacteria from the phylum Verrucomicrobiota. [2]

Defensive symbiosis with Euplotidium

Epixenosomes live on the dorsal surface of their hosts, marine ciliates in the genus Euplotidium. The name "epixenosomes" comes from the ancient Greek επι ξενον σομα, meaning "external alien body", referring to their extracellular position on the host. The extrusive apparatus ejects its contents when triggered; this process helps to defend the ciliate host against predators. Although Euplotidium can grow and reproduce without epixenosomes, those with epixenosomes have much higher survival when exposed to predators such as the ciliate Litonotus . [3]

External signals of unknown origin are detected by the membrane receptors located at the top of the organism. The consequent activation of the adenylate cyclase-cAMP system triggers the ejection of the extrusive apparatus, with the formation of a hollow tube, about 40 μm long, terminating in a head mainly consisting of the apical portion of the epixenosome (the region containing DNA). [1]

The extrusive apparatus is surrounded by a basket of tubules. Experiments with antitubulin drugs and immunocytochemical analyses at the optical and electron microscopical level suggested that these tubules consist of tubulin, which is a eukaryotic protein. [1] Although some free-living Verrucomicrobiota are reported to have tubulin genes, [4] they have not been found to have tubular structures like those of epixenosomes.

See also

Related Research Articles

<span class="mw-page-title-main">Cell (biology)</span> Basic unit of many life forms

The cell is the basic structural and functional unit of all forms of life. Every cell consists of cytoplasm enclosed within a membrane, and contains many macromolecules such as proteins, DNA and RNA, as well as many small molecules of nutrients and metabolites. The term comes from the Latin word cellula meaning 'small room'.

<i>Paramecium</i> Genus of unicellular ciliates, commonly studied as a representative of the ciliate group

Paramecium is a genus of eukaryotic, unicellular ciliates, commonly studied as a model organism of the ciliate group. Paramecium are widespread in freshwater, brackish, and marine environments and are often abundant in stagnant basins and ponds. Because some species are readily cultivated and easily induced to conjugate and divide, they have been widely used in classrooms and laboratories to study biological processes. The usefulness of Paramecium as a model organism has caused one ciliate researcher to characterize it as the "white rat" of the phylum Ciliophora.

<i>Vorticella</i> Genus of single-celled organisms

Vorticella is a genus of bell-shaped ciliates that have stalks to attach themselves to substrates. The stalks have contractile myonemes, allowing them to pull the cell body against substrates. The formation of the stalk happens after the free-swimming stage.

<span class="mw-page-title-main">PVC superphylum</span> Superphylum of bacteria

The PVC superphylum is a superphylum of bacteria named after its three important members, Planctomycetota, Verrucomicrobiota, and Chlamydiota. Cavalier-Smith postulated that the PVC bacteria probably lost or reduced their peptidoglycan cell wall twice. It has been hypothesised that a member of the PVC clade might have been the host cell in the endosymbiotic event that gave rise to the first proto-eukaryotic cell.

<i>Spirostomum</i>

Spirostomum is a genus of ciliated protists in the class Heterotrichea. It is known for being very contractile. Having been first identified by Christian Gottfried Ehrenberg in 1834, further research has identified eight additional true morphospecies. This bacterivore genus mainly lives in the sediment deposits at the bottom of various aquatic habitats, and members possess rquA genes that could be responsible for their ability to survive in these hypoxic and anoxic environments. They are identifiable by their relatively large tubular/flat vermiform bodies. Their life cycle consists of a growth stage, in which they mature, and asexual and sexual reproduction stages. Some species are model organisms for studies on human pathogenic bacteria, while others are sensitive and accurate bioindicators for toxic substances.

<span class="mw-page-title-main">Protozoa</span> Single-celled eukaryotic organisms that feed on organic matter

Protozoa are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals".

Karyorelictea is a class of ciliates in the subphylum Postciliodesmatophora. Most species are members of the microbenthos community, that is, microscopic organisms found in the marine interstitial habitat, though one genus, Loxodes, is found in freshwater.

<span class="mw-page-title-main">Ciliate</span> Taxon of protozoans with hair-like organelles called cilia

The ciliates are a group of alveolates characterized by the presence of hair-like organelles called cilia, which are identical in structure to eukaryotic flagella, but are in general shorter and present in much larger numbers, with a different undulating pattern than flagella. Cilia occur in all members of the group and are variously used in swimming, crawling, attachment, feeding, and sensation.

Fission, in biology, is the division of a single entity into two or more parts and the regeneration of those parts to separate entities resembling the original. The object experiencing fission is usually a cell, but the term may also refer to how organisms, bodies, populations, or species split into discrete parts. The fission may be binary fission, in which a single organism produces two parts, or multiple fission, in which a single entity produces multiple parts.

<i>Climacostomum</i> Genus of single-celled organisms

Climacostomum is a genus of unicellular ciliates, belonging to the class Heterotrichea.

<span class="mw-page-title-main">Mobilida</span> Order of protists belonging to the ciliates phylum

Mobilida is a group of parasitic or symbiotic peritrich ciliates, comprising more than 280 species. Mobilids live on or within a wide variety of aquatic organisms, including fish, amphibians, molluscs, cnidarians, flatworms and other ciliates, attaching to their host organism by means of an aboral adhesive disk. Some mobilid species are pathogens of wild or farmed fish, causing severe and economically damaging diseases such as trichodinosis.

<span class="mw-page-title-main">Marine microbial symbiosis</span>

Microbial symbiosis in marine animals was not discovered until 1981. In the time following, symbiotic relationships between marine invertebrates and chemoautotrophic bacteria have been found in a variety of ecosystems, ranging from shallow coastal waters to deep-sea hydrothermal vents. Symbiosis is a way for marine organisms to find creative ways to survive in a very dynamic environment. They are different in relation to how dependent the organisms are on each other or how they are associated. It is also considered a selective force behind evolution in some scientific aspects. The symbiotic relationships of organisms has the ability to change behavior, morphology and metabolic pathways. With increased recognition and research, new terminology also arises, such as holobiont, which the relationship between a host and its symbionts as one grouping. Many scientists will look at the hologenome, which is the combined genetic information of the host and its symbionts. These terms are more commonly used to describe microbial symbionts.

<span class="mw-page-title-main">Condylostoma</span> Genus of protists belonging to the ciliates phylum

Condylostoma is a genus of unicellular ciliate protists, belonging to the class Heterotrichea.

Euplotidium is a genus of ciliates. Species form symbiotic relations with bacteria in structures named Epixenosomes.

Prosthecobacter is a genus of bacteria from the phylum Verrucomicrobiota with a distinctive characteristic; the presence of tubulin-like genes. Tubulins, which are components of the microtubule, have never been observed in Gracilicutes before.

<span class="mw-page-title-main">Evolution of bacteria</span> Development of bacteria throughout time

The evolution of bacteria has progressed over billions of years since the Precambrian time with their first major divergence from the archaeal/eukaryotic lineage roughly 3.2-3.5 billion years ago. This was discovered through gene sequencing of bacterial nucleoids to reconstruct their phylogeny. Furthermore, evidence of permineralized microfossils of early prokaryotes was also discovered in the Australian Apex Chert rocks, dating back roughly 3.5 billion years ago during the time period known as the Precambrian time. This suggests that an organism in of the phylum Thermotogota was the most recent common ancestor of modern bacteria.

Parablepharismea is a class of free-living marine and brackish anaerobic ciliates that form a major clade of obligate anaerobes within the SAL group, together with the classes Muranotrichea and Armophorea.

<i>Halteria</i> Genus of single-celled organisms

Halteria, sometimes referred to as the jumping oligotrich, is a genus of common planktonic ciliates that are found in many freshwater environments. Halteria are easy to locate due to their abundance and distinctive behaviour with observations of Halteria potentially dating back to the 17th century and the discovery of microorganisms. Over time more has been established about their morphology and behavior, which has led to many changes in terms of classification.

<i>Paramecium biaurelia</i> Species of parasitic protist

Paramecium biaurelia is a species of unicellular ciliates under the genus Paramecium, and one of the cryptic species of Paramecium aurelia. It is a free-living protist in water bodies and harbours several different bacteria as endosymbionts. Although the bacteria are parasites by definition, they also exhibit mutual relationship with the protist by providing survival benefits. It is used as an organism model in the study of the effects of gravitational forces in different environments.

Bihospites is a genus of symbiontid euglenozoans characterized by the presence of two species of epibiotic bacteria on the cell surface. Bihospites cells are clear, biflagellated, and uninucleated, that range between 40–120 μm long and 15–30 μm wide. Bihospites, as well as other members of the symbiontids, are found in semi-anoxic to anoxic sediments in benthic marine environments. Each cell surface is covered by both rod-shaped and spherical-shaped epibiotic bacteria that may share a commensalistic or mutualistic relationship with Bihospites host cells. Bihospites cells are highly contractile and contain several morphological synapomorphies which are present in euglenozoans, however they also contain several unique morphological traits including a unique C-shaped feeding apparatus.

References

  1. 1 2 3 4 Rosati, G. (1999). "Epixenosomes: symbionts of the hypotrich ciliate Euplotidium itoi". Symbiosis. 26: 1–23.
  2. Petroni, Giulio; Spring, Stefan; Schleifer, Karl-Heinz; Verni, Franco; Rosati, Giovanna (2000-02-15). "Defensive extrusive ectosymbionts of Euplotidium (Ciliophora) that contain microtubule-like structures are bacteria related to Verrucomicrobia". Proceedings of the National Academy of Sciences. 97 (4): 1813–1817. Bibcode:2000PNAS...97.1813P. doi: 10.1073/pnas.030438197 . ISSN   0027-8424. PMC   26518 . PMID   10660683.
  3. Rosati, Giovanna; Petroni, Giulio; Quochi, Silvia; Modeo, Letizia; Verni, Franco (1999-05-01). "Epixenosomes: Peculiar Epibionts of the Hypotrich Ciliate Euplotidium Itoi Defend Their Host Against Predators". Journal of Eukaryotic Microbiology. 46 (3): 278–282. doi:10.1111/j.1550-7408.1999.tb05125.x. ISSN   1550-7408. S2CID   85293508.
  4. Jenkins, Cheryl; Samudrala, Ram; Anderson, Iain; Hedlund, Brian P.; Petroni, Giulio; Michailova, Natasha; Pinel, Nicolas; Overbeek, Ross; Rosati, Giovanna (2002-12-24). "Genes for the cytoskeletal protein tubulin in the bacterial genus Prosthecobacter". Proceedings of the National Academy of Sciences of the United States of America. 99 (26): 17049–17054. Bibcode:2002PNAS...9917049J. doi: 10.1073/pnas.012516899 . ISSN   0027-8424. PMC   139267 . PMID   12486237.