A ballistic chronograph or gun chronograph is a measuring instrument used to measure the velocity of a projectile in flight, typically fired from a gun or other firearm. The instrument is often useful for tasks such as gauging the utility of a firearm or safety of non-lethal projectiles fired from items such as a paintball gun or BB gun.
Benjamin Robins (1707–1751) invented the ballistic pendulum that measures the momentum of the projectile fired by a gun. Dividing the momentum by the projectile mass gives the velocity. Robbins published his results as New Principles of Gunnery in 1742. [1] [2] The ballistic pendulum could make only one measurement per firing because the device catches the projectile. [3] The gun's accuracy also limited how far down range a measurement could be made. [4]
Alessandro Vittorio Papacino d'Antoni published results in 1765 using a wheel chronometer. This used a horizontal spinning wheel with a vertical paper mounted on the rim. The bullet was fired across the diameter of the wheel so that it pierced the paper on both sides, and the angular difference along with the rotation speed of the wheel was used to compute the bullet velocity. [5]
An early chronograph that measures velocity directly was built in 1804 by Grobert, a colonel in the French Army. This used a rapidly rotating axle with two disks mounted on it about 13 feet apart. The bullet was fired parallel to the axle, and the angular displacement of the holes in the two disks, together with the rotational speed of the axle, yielded the bullet velocity. [6]
Ingalls (1886 , p. 18) describes Bashforth's chronograph that could make many measurements over long distances:
The Bashforth screens were made with several threads and series connected switches. A projectile passing through a screen would break one or more threads, the broken thread caused a switch to momentarily (about 20 ms) interrupt a current as the switch arm moved from its weighted position to its unweighted position, and the momentary interruption would be recorded on a paper chart. [7]
The first electronic ballistic chronograph was invented by Kiryako ("Jerry") Arvanetakis in the 1950s.[ citation needed ] As consulting engineer under contract by NACA (later NASA), he was asked to find a way to accurately measure the velocity of various projectiles fired at hyper-velocities into a variety of engineered materials in anticipation of crewed space flight. His first design was an open rectangular frame of square aluminum tubing with a screen of fine copper wire at both ends. Breaking the first wire started charging a capacitor, breaking the second wire stopped it. Measuring the accumulated voltage and knowing the rate of charge the elapsed time could be accurately calculated.
The modern chronograph consists of two sensing areas framed by rods topped by diffusing screens or artificial lighting above (or below) along with optical sensors that detect the passage of the bullet. The time it takes the bullet to travel the distance between the sensors is measured electronically from which velocity is calculated and displayed.
Advanced ballistic chronographs include a type employing Doppler radar to measure bullets in free flight at various distances; another is a device mounted at the end of a barrel, which uses magnetic field sensors for the measurement of a bullet's velocity as it exits the muzzle. [8]
A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constructions, including specialized functions such as hunting, target shooting, training, and combat. Bullets are often tapered, making them more aerodynamic. Bullet size is expressed by weight and diameter in both imperial and metric measurement systems. Bullets do not normally contain explosives but strike or damage the intended target by transferring kinetic energy upon impact and penetration.
Recoil is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force required to accelerate something will evoke an equal but opposite reactional force, which means the forward momentum gained by the projectile and exhaust gases (ejectae) will be mathematically balanced out by an equal and opposite momentum exerted back upon the gun.
Ballistics is the field of mechanics concerned with the launching, flight behaviour and impact effects of projectiles, especially ranged weapon munitions such as bullets, unguided bombs, rockets or the like; the science or art of designing and accelerating projectiles so as to achieve a desired performance.
Muzzle velocity is the speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel. Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, to more than 1,200 m/s (3,900 ft/s) in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) for tank guns firing kinetic energy penetrator ammunition. To simulate orbital debris impacts on spacecraft, NASA launches projectiles through light-gas guns at speeds up to 8,500 m/s (28,000 ft/s). FPS and MPH are the most common American measurements for bullets. Several factors, including the type of firearm, the cartridge, and the barrel length, determine the bullet's muzzle velocity.
Benjamin Robins was a pioneering British scientist, Newtonian mathematician, and military engineer.
External ballistics or exterior ballistics is the part of ballistics that deals with the behavior of a projectile in flight. The projectile may be powered or un-powered, guided or unguided, spin or fin stabilized, flying through an atmosphere or in the vacuum of space, but most certainly flying under the influence of a gravitational field.
A torsion spring is a spring that works by twisting its end along its axis; that is, a flexible elastic object that stores mechanical energy when it is twisted. When it is twisted, it exerts a torque in the opposite direction, proportional to the amount (angle) it is twisted. There are various types:
A gunshot is a single discharge of a gun, typically a man-portable firearm, producing a visible flash, a powerful and loud shockwave and often chemical gunshot residue. The term can also refer to a ballistic wound caused by such a discharge.
Internal ballistics, a subfield of ballistics, is the study of the propulsion of a projectile.
Body armor, personal armor, armored suit (armoured) or coat of armor, among others, is armor for a person's body: protective clothing or close-fitting hands-free shields designed to absorb or deflect physical attacks. Historically used to protect military personnel, today it is also used by various types of police, private security guards, or bodyguards, and occasionally ordinary citizens. Today there are two main types: regular non-plated body armor for moderate to substantial protection, and hard-plate reinforced body armor for maximum protection, such as used by combatants.
The CheyTac Intervention also known as the CheyTac M200, is an American bolt-action sniper rifle manufactured by CheyTac USA, which can also be classified as an anti-materiel rifle. It is fed by a seven-round detachable single-stack magazine. It is specifically chambered in either .408 Chey Tac or .375 Chey Tac ammunition. CheyTac Inc. states that the system is capable of delivering sub-MOA accuracy at ranges of up to 2,500 yd (2,286 m). It is based on the EDM Arms Windrunner.
In ballistics, the ballistic coefficient of a body is a measure of its ability to overcome air resistance in flight. It is inversely proportional to the negative acceleration: a high number indicates a low negative acceleration—the drag on the body is small in proportion to its mass. BC can be expressed with the units kilograms per square meter (kg/m2) or pounds per square inch (lb/in2).
Gun laying is the process of aiming an artillery piece or turret, such as a gun, howitzer, or mortar, on land, at sea, or in air, against surface or aerial targets. It may be laying for either direct fire, where the gun is aimed directly at a target within the line-of-sight of the user, or by indirect fire, where the gun is not aimed directly at a target within the line-of-sight of the user. Indirect fire is determined from the information or data that is collected, calculated, and applied to physical coordinates to identify the location of the target by the user. The term includes automated aiming using, for example, radar-derived target data and computer-controlled guns.
The .41 Short Rimfire, also known as the .41 Short, was first introduced by the National Arms Company in 1863.
A ballistic pendulum is a device for measuring a bullet's momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs, which allow direct measurement of the projectile velocity.
The .408 Cheyenne Tactical is a specialized rimless, bottlenecked, centerfire cartridge for military long-range sniper rifles that was developed by Dr. John D. Taylor and machinist William O. Wordman. The round was designed with a possible military need for a cartridge for anti-personnel, anti-sniper, and anti-materiel roles with a (supersonic) precision range of 2,200 yards. It is offered as a competitor to the most common military NATO long-range service cartridges, such as .338 Lapua Magnum and the .50 BMG.
QuickLOAD is an internal ballistics predictor computer program for firearms.
The Aberdeen chronograph was the first portable gun chronograph, an instrument for measuring the muzzle velocity and striking power of a projectile fired by a gun. It was invented in 1918 by Alfred Lee Loomis at the U.S. Army's Aberdeen Proving Ground.
An inertial navigation system is a navigation device that uses motion sensors (accelerometers), rotation sensors (gyroscopes) and a computer to continuously calculate by dead reckoning the position, the orientation, and the velocity of a moving object without the need for external references. Often the inertial sensors are supplemented by a barometric altimeter and sometimes by magnetic sensors (magnetometers) and/or speed measuring devices. INSs are used on mobile robots and on vehicles such as ships, aircraft, submarines, guided missiles, and spacecraft. Older INS systems generally used an inertial platform as their mounting point to the vehicle and the terms are sometimes considered synonymous.
Francis Bashforth was an English Anglican priest and mathematician, who is known for his use of applied mathematics on ballistics.