Hard disk drive interface

Last updated

Hard disk drives are accessed over one of a number of bus types, including parallel ATA (PATA, also called IDE or EIDE; described before the introduction of SATA as ATA), Serial ATA (SATA), SCSI, Serial Attached SCSI (SAS), and Fibre Channel. Bridge circuitry is sometimes used to connect hard disk drives to buses with which they cannot communicate natively, such as IEEE 1394, USB, SCSI, NVMe and Thunderbolt.

Contents

Disk interface families

Disk drive interfaces have evolved from simple interfaces requiring complex controllers to attach to a computer into high level interfaces that present a consistent interface to a computer system regardless of the internal technology of the hard disk drive. The following table lists some common HDD interfaces in chronological order:

Acronym or abbreviationMeaningDescription
SMD Storage Module Device Bit serial data interface introduced by CDC
Standard interface for many mini-computers in the 1970s and 1980s.
SASI Shugart Associates System Interface Word serial interface introduced by Shugart Associates circa 1978;
Evolved by ANSI into SCSI (SASI is a compatible subset of the first version of SCSI).
ST-506
ST-412
ST-412RLL
Bit serial data interfaces introduced by Seagate Technology beginning 1980.
Standard interfaces for most small HDDs in the 1980s and early 1990s.
SCSI Small Computer System Interface Word serial interface sponsored by ANSI and introduced in mid 1980s;
Standard interfaces for most enterprise HDDs in this century; superseded by SAS
ESDI Enhanced Small Disk Interface Bit serial data interface sponsored by ANSI and first introduced by Maxtor in late 1980s.
A higher data rate follow on to the ST-506 family into the mid-1990s, superseded by SCSI
(P)ATA
IDE
(Parallel) AT Attachment
Integrated Drive Electronics
Word serial interface introduced in late 1980s by Conner Peripherals, later sponsored by ANSI; successor to ST-412/506/ESDI. Standard HDD interface on all but enterprise HDDs until superseded by SATA
SATA Serial ATA Bit serial interface successor to PATA sponsored by ANSI and introduced in 2003.
Most common interface for all but enterprise HDDs.
SAS Serial Attached SCSI Bit serial interface successor to SCSI sponsored by ANSI and introduced in 2004.
Most common interface for enterprise HDDs.

Early interfaces

A data cable (top) and control cable (below) connecting a controller card and an ST-506 type HDD. Power cable not shown. ST-506 MFM Twin Cables.xcf
A data cable (top) and control cable (below) connecting a controller card and an ST-506 type HDD. Power cable not shown.

The earliest hard disk drive (HDD) interfaces were bit serial data interfaces that connected an HDD to a controller with two cables, one for control and one for data. [lower-alpha 1] An additional cable was used for power, initially frequently AC but later usually connected directly to a DC power supply unit. The controller provided significant functions such as serial/parallel conversion, data separation, and track formatting, and required matching to the drive (after formatting) in order to assure reliability. Each control cable could serve two or more drives, while a dedicated (and smaller) data cable served each drive.

Examples of such early interfaces include:

In bit serial data interfaces the data frequency, data encoding scheme as written to the disk surface and error detection all influenced the design of the supporting controller. Encoding schemes used included Frequency modulation (FM), Modified Frequency Modulation (MFM) and RLL [2] encoding at frequencies for example ranging from 0.156 MHz (FM on 2311) to 7.5 MHz (RLL on ST412) MHz. Thus each time the internal technology advanced there was a necessary delay as controllers were designed or redesigned to accommodate the advancement; this along with the cost of controller development led to the introduction of Word serial interfaces.

Enhanced Small Disk Interface (ESDI) was an attempt to minimize controller design time by supporting multiple data rates with a standard data encoding scheme; this was usually negotiated automatically by the disk drive and controller; most of the time, however, 15 or 20 megabit ESDI disk drives were not downward compatible (i.e. a 15 or 20 megabit disk drive would not run on a 10 megabit controller). ESDI disk drives typically also had jumpers to set the number of sectors per track and (in some cases) sector size.

Word serial interfaces

Historical Word serial interfaces connect a hard disk drive to a bus adapter [lower-alpha 2] with one cable for combined data/control. (As for all early interfaces above, each drive also has an additional power cable, usually direct to the power supply unit.) The earliest versions of these interfaces typically had an 8 bit parallel data transfer to/from the drive, but 16-bit versions became much more common, and there are 32 bit versions. The word nature of data transfer makes the design of a host bus adapter significantly simpler than that of the precursor HDD controller.

Several Parallel ATA hard disk drives Pata hdds.jpg
Several Parallel ATA hard disk drives

Bit serial interfaces

Modern bit serial interfaces connect a hard disk drive to a host bus interface adapter (today in a PC typically integrated into the "south bridge") with one data/control cable. Each drive also has an additional power cable, usually direct to the power supply unit.

An mSATA SSD on top of a 2.5-inch SATA drive MSATA SSD vs. 2.5" SATA drive.JPG
An mSATA SSD on top of a 2.5-inch SATA drive

Notes

  1. A few HDDs were parallel data transfer device, e.g. IBM 2305
  2. Today typically integrated but separate boards or boxes in early embodiments

Related Research Articles

<span class="mw-page-title-main">Parallel ATA</span> Interface standard for the connection of storage devices

Parallel ATA (PATA), originally AT Attachment, also known as IDE, is a standard interface designed for IBM PC-compatible computers. It was first developed by Western Digital and Compaq in 1986 for compatible hard drives and CD or DVD drives. The connection is used for storage devices such as hard disk drives, floppy disk drives, and optical disc drives in computers.

<span class="mw-page-title-main">Bus (computing)</span> System that transfers data between components within a computer

In computer architecture, a bus is a communication system that transfers data between components inside a computer, or between computers. This expression covers all related hardware components and software, including communication protocols.

<span class="mw-page-title-main">Hard disk drive</span> Electro-mechanical data storage device

A hard disk drive (HDD), hard disk, hard drive, or fixed disk, is an electro-mechanical data storage device that stores and retrieves digital data using magnetic storage with one or more rigid rapidly rotating platters coated with magnetic material. The platters are paired with magnetic heads, usually arranged on a moving actuator arm, which read and write data to the platter surfaces. Data is accessed in a random-access manner, meaning that individual blocks of data can be stored and retrieved in any order. HDDs are a type of non-volatile storage, retaining stored data when powered off. Modern HDDs are typically in the form of a small rectangular box.

<span class="mw-page-title-main">Industry Standard Architecture</span> 16-bit internal bus

Industry Standard Architecture (ISA) is the 16-bit internal bus of IBM PC/AT and similar computers based on the Intel 80286 and its immediate successors during the 1980s. The bus was (largely) backward compatible with the 8-bit bus of the 8088-based IBM PC, including the IBM PC/XT as well as IBM PC compatibles.

<span class="mw-page-title-main">SCSI</span> Set of computer and peripheral connection standards

Small Computer System Interface is a set of standards for physically connecting and transferring data between computers and peripheral devices. The SCSI standards define commands, protocols, electrical, optical and logical interfaces. The SCSI standard defines command sets for specific peripheral device types; the presence of "unknown" as one of these types means that in theory it can be used as an interface to almost any device, but the standard is highly pragmatic and addressed toward commercial requirements. The initial Parallel SCSI was most commonly used for hard disk drives and tape drives, but it can connect a wide range of other devices, including scanners and CD drives, although not all controllers can handle all devices.

<span class="mw-page-title-main">ST506/ST412</span>

The ST-506 and ST-412 were early hard disk drive products introduced by Seagate in 1980 and 1981 respectively, that later became construed as hard disk drive interfaces: the ST-506 disk interface and the ST-412 disk interface. Compared to the ST-506 precursor, the ST-412 implemented a refinement to the seek speed, and increased the drive capacity from 5 MB to 10 MB, but was otherwise highly similar.

<span class="mw-page-title-main">Low-voltage differential signaling</span> Technical standard

Low-voltage differential signaling (LVDS), also known as TIA/EIA-644, is a technical standard that specifies electrical characteristics of a differential, serial signaling standard. LVDS operates at low power and can run at very high speeds using inexpensive twisted-pair copper cables. LVDS is a physical layer specification only; many data communication standards and applications use it and add a data link layer as defined in the OSI model on top of it.

<span class="mw-page-title-main">SATA</span> Computer bus interface for storage devices

SATA is a computer bus interface that connects host bus adapters to mass storage devices such as hard disk drives, optical drives, and solid-state drives. Serial ATA succeeded the earlier Parallel ATA (PATA) standard to become the predominant interface for storage devices.

Enhanced Small Disk Interface (ESDI) is an obsolete disk interface designed by Maxtor Corporation in the early 1980s to be a follow-on to the ST-412/506 interface. ESDI improved on ST-506 by moving certain parts that were traditionally kept on the controller into the drives themselves, and also generalizing the control bus such that more kinds of devices could be connected. ESDI uses the same cabling as ST-506, and thus could easily be retrofitted to ST-506 applications.

<span class="mw-page-title-main">Disk controller</span>

The disk controller is the controller circuit which enables the CPU to communicate with a hard disk, floppy disk or other kind of disk drive. It also provides an interface between the disk drive and the bus connecting it to the rest of the system.

<span class="mw-page-title-main">CompactFlash</span> Memory card format

CompactFlash (CF) is a flash memory mass storage device used mainly in portable electronic devices. The format was specified and the devices were first manufactured by SanDisk in 1994.

Disk formatting is the process of preparing a data storage device such as a hard disk drive, solid-state drive, floppy disk, memory card or USB flash drive for initial use. In some cases, the formatting operation may also create one or more new file systems. The first part of the formatting process that performs basic medium preparation is often referred to as "low-level formatting". Partitioning is the common term for the second part of the process, dividing the device into several sub-devices and, in some cases, writing information to the device allowing an operating system to be booted from it. The third part of the process, usually termed "high-level formatting" most often refers to the process of generating a new file system. In some operating systems all or parts of these three processes can be combined or repeated at different levels and the term "format" is understood to mean an operation in which a new disk medium is fully prepared to store files. Some formatting utilities allow distinguishing between a quick format, which does not erase all existing data and a long option that does erase all existing data.

<span class="mw-page-title-main">Host adapter</span> Computer hardware device

In computer hardware, a host controller, host adapter, or host bus adapter (HBA), connects a computer system bus, which acts as the host system, to other network and storage devices. The terms are primarily used to refer to devices for connecting SCSI, SAS, Fibre Channel and SATA devices. Devices for connecting to FireWire, USB and other devices may also be called host controllers or host adapters.

<span class="mw-page-title-main">Disk enclosure</span> Specialized casing

A disk enclosure is a specialized casing designed to hold and power disk drives while providing a mechanism to allow them to communicate to one or more separate computers.

<span class="mw-page-title-main">Serial Attached SCSI</span> Point-to-point serial protocol for enterprise storage

In computing, Serial Attached SCSI (SAS) is a point-to-point serial protocol that moves data to and from computer-storage devices such as hard disk drives and tape drives. SAS replaces the older Parallel SCSI bus technology that first appeared in the mid-1980s. SAS, like its predecessor, uses the standard SCSI command set. SAS offers optional compatibility with Serial ATA (SATA), versions 2 and later. This allows the connection of SATA drives to most SAS backplanes or controllers. The reverse, connecting SAS drives to SATA backplanes, is not possible.

A SCSI connector is used to connect computer parts that use a system called SCSI to communicate with each other. Generally, two connectors, designated male and female, plug together to form a connection which allows two components, such as a computer and a disk drive, to communicate with each other. SCSI connectors can be electrical connectors or optical connectors. There have been a large variety of SCSI connectors in use at one time or another in the computer industry. Twenty-five years of evolution and three major revisions of the standards resulted in requirements for Parallel SCSI connectors that could handle an 8, 16 or 32 bit wide bus running at 5, 10 or 20 megatransfer/s, with conventional or differential signaling. Serial SCSI added another three transport types, each with one or more connector types. Manufacturers have frequently chosen connectors based on factors of size, cost, or convenience at the expense of compatibility.

<span class="mw-page-title-main">Parallel SCSI</span>

Parallel SCSI is the earliest of the interface implementations in the SCSI family. SPI is a parallel bus; there is one set of electrical connections stretching from one end of the SCSI bus to the other. A SCSI device attaches to the bus but does not interrupt it. Both ends of the bus must be terminated.

Tagged Command Queuing (TCQ) is a technology built into certain ATA and SCSI hard drives. It allows the operating system to send multiple read and write requests to a hard drive. ATA TCQ is not identical in function to the more efficient Native Command Queuing (NCQ) used by SATA drives. SCSI TCQ does not suffer from the same limitations as ATA TCQ.

<span class="mw-page-title-main">Disk buffer</span>

In computer storage, disk buffer is the embedded memory in a hard disk drive (HDD) or solid state drive (SSD) acting as a buffer between the rest of the computer and the physical hard disk platter or flash memory that is used for storage. Modern hard disk drives come with 8 to 256 MiB of such memory, and solid-state drives come with up to 4 GB of cache memory.

<span class="mw-page-title-main">Storage area network</span> Network which provides access to consolidated, block-level data storage

A storage area network (SAN) or storage network is a computer network which provides access to consolidated, block-level data storage. SANs are primarily used to access data storage devices, such as disk arrays and tape libraries from servers so that the devices appear to the operating system as direct-attached storage. A SAN typically is a dedicated network of storage devices not accessible through the local area network (LAN).

References

  1. IBM 2311 Field Engineering Theory of Operation, October 1967, Chapter 3 and Fig. 3-1
  2. "Reed Solomon Codes – Introduction"
  3. IBM 3880 Storage Control,Models 1, 2, 3, and 4 Description Manual, GA26-1661-9. September 1987
  4. Via 'New Attachment Strategy' IBM Meant to Frustrate PCMs
  5. IBM 3990 Storage Control Reference: GLOSSARY, GA32-0099-06, © Copyright IBM Corp. 1988, 1994
  6. “Intelligent systems interface eases peripheral integration,” H. Meyer & J. Korpi, Electronic Design, August 20, 1981, pp. 97-103