Hyaenodon

Last updated

Hyaenodon
Temporal range: Middle Eocene to Early Miocene (Bartonian to Burdigalian) 38–17  Ma
Hyaenodon (1).jpg
Mounted H. sp. skeleton, Science Museum of Minnesota
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Animalia
Phylum: Chordata
Class: Mammalia
Order: Hyaenodonta
Superfamily: Hyaenodontoidea
Family: Hyaenodontidae
Subfamily: Hyaenodontinae
Tribe: Hyaenodontini
Leidy, 1869 [1]
Genus: Hyaenodon
Laizer & Parieu, 1838
Type species
Hyaenodon leptorhynchus
Laizer and Parieu, 1838
Species
Synonyms [2]
synonyms of genus:
  • Gobipterodon(Lavrov, 1999) [3]
  • Macrohyaenodon(Lavrov & Emry, 1998)
  • Macropterodon(Lavrov, 1999)
  • Megalopterodon(Dashzeveg, 1964)
  • Microhyaenodon(Lavrov, 1999) [3]
  • Neohyaenodon(Thorpe, 1922)
  • Prohyaenodon(Lavrov, 1999)
  • Protohyaenodon(Stock, 1933)
  • Pseudopterodon(Schlosser, 1887)
  • Taxotherium(Blainville, 1841)
synonyms of species:
  • H. brachyrhynchus:
    • Canis brachyrhynchus(Blainville, 1841)
    • Hyaenodon brachyrhenchus(Lavrov, 1999)
    • Hyaenodon cuvieri(Pictet, 1853) [4]
    • Hyaenodon leptorhynchus(Dujardin, 1840) [5]
    • Hyaenodon parisiensis(Laurillard, 1845) [6]
    • Hyaenodon vulpinum(Filhol, 1877)
    • Hyaenodon vulpinus(Gervais, 1873)
    • Nasua parisiensis(Blainville, 1841)
    • Pterodon brachyrhynchus(Pomel, 1846) [7]
    • Pterodon cuvieri(Pomel, 1846)
    • Taxotherium parisiense(Blainville, 1841)
  • H. brevirostrus:
    • Hyaenodon brevirostris(Joeckel, 1997) [8]
    • Protohyaenodon brevirostrus(Mellett, 1977)
  • H. chunkhtensis:
    • Microhyaenodon chunkhtensis(Lavrov, 1999)
  • H. crucians:
    • Hyaenodon leptocephalus(Scott, 1888) [9]
    • Hyaenodon minutus(Douglass, 1902)
    • Hyaenodon paucidens(Osborn & Wortman, 1894) [10]
    • Protohyaenodon crucians(Mellett, 1977)
    • Prtohyaenodon crucians(Lavrov, 1999)
    • Pseudopterodon minutus(Douglass, 1902)
  • H. dubius:
    • Hyaenodon aymardi(Filhol, 1882) [11]
  • H. exiguus:
    • Hyaenodon exigus(Lavrov, 1999)
    • Pterodon exiguum(Gervais, 1873)
  • H. filholi:
    • Hyaenodon compressus(Filhol, 1876)
    • Hyaenodon vulpinus(Filhol, 1876)
    • Microhyaenodon filholi(Lavrov, 1999)
    • Pseudopterodon ganodus(Schlosser, 1887)
  • H. gervaisi:
    • Hyaenodon ambiguous
    • Hyaenodon ambiguus(Martin, 1906)
  • H. gigas:
    • Macropterodon zelenovi(Lavrov, 1999)
    • Neohyaenodon gigas(Lavrov, 1999)
  • H. heberti:
    • Hyaenodon arnaudi(Depéret, 1917) [12]
  • H. horridus:
    • Hyaenodon cruentus(Leidy, 1853)
    • Neohyaenodon horridus(Thorpe, 1922)
    • Neohyaenodon semseyi(Kretzoi, 1941) [13]
  • H. incertus:
    • Gobipterodon exploratus(Lavrov, 1999)
    • Hyaenodon exploratus(Polly, 1993) [14]
    • Neohyaenodon incertus(Lavrov, 1999)
    • Pterodon exploratus(Dashzeveg, 1985)
  • H. leptorhynchus:
    • Canis leptorhynchus(Blainville, 1841)
    • Hyaenodon bavaricus(Dehm, 1935) [15]
    • Hyaenodon cayluxi(Filhol, 1876)
    • Hyaenodon martini(Depéret, 1917)
    • Hyaenodon milloquensis(Martin, 1906)
    • Pterodon leptorhynchus(Pomel, 1846)
  • H. macrocephalus:
    • Neohyaenodon macrocephalus(Lavrov, 1999)
  • H. megaloides:
    • Neohyaenodon megaloides(Mellett, 1977)
  • H. microdon:
    • Microhyaenodon microdon(Lavrov, 1999)
    • Protohyaenodon microdon(Mellett, 1977)
  • H. milvinus:
    • Neohyaenodon milvinus(Lavrov, 1999)
  • H. minor:
    • Hyaenodon aimi(Cooper, 1926) [16]
    • Hyaenodon hantonensis(Lydekker, 1884) [17]
  • H. mongoliensis:
    • Epipterodon mongoliensis(Lavrov, 1999)
    • Megalopterodon mongoliensis(Dashzeveg, 1964)
    • Neohyaenodon mongoliensis(Morlo & Nagel, 2006) [18]
    • Pterodon mongoliensis(Van Valen, 1967) [19]
  • H. montanus:
    • Protohyaenodon montanus
    • Neohyaenodon montanus(Mellett, 1977)
  • H. mustelinus:
    • Hyaenodon mustilinius
    • Prohyaenodon mustelinus(Lavrov, 1999)
    • Protohyaenodon mustelinus(Scott, 1894)
  • H. pervagus:
    • Hyaenodon neimongoliensis(Huang & Zhu, 2002) [20]
  • H. pumilus:
    • Microhyaenodon pumilus(Lavrov, 1999)
  • H. raineyi:
    • Microhyaenodon raineyi(Lavrov, 1999)
    • Protohyaenodon raineyi(Gustafson, 1986)
  • H. requieni:
    • Hyaenodon heberti euzetensis(Depéret, 1917)
    • Pterodon requieni(Gervais, 1846)
  • H. venturae:
    • Hyaenodon exiguus(Stock, 1933)
    • Microhyaenodon venturae(Lavrov, 1999)
    • Protohyaenodon exiguus(Stock, 1933)
    • Protohyaenodon venturae(Mellett, 1977)
  • H. vetus:
    • Neohyaenodon vetus(Mellett, 1977)
    • Pterodon californicus(Stock, 1933)
  • H. yuanchuensis:
    • Hyaenodon yuanchüensis(Young, 1937)

Hyaenodon ("hyena-tooth") is an extinct genus of carnivorous placental mammals from extinct tribe Hyaenodontini within extinct subfamily Hyaenodontinae (in extinct family Hyaenodontidae), that belonged to the now extinct order Hyaenodonta. [21] The genus consists of many species that lived in Eurasia and North America from the Middle Eocene to the Early Miocene, from 38 to 17 million years ago, existing for 21 million years. [22]

Contents

The genus currently consists of over a dozen species, although reanalysis of the genus is needed. [23] The species within the genus ranged in size from H. filholi, who weighed 2 kg (4.4 lb), to H. gigas and H. mongoliensis, who were estimated to be similar in size to Hyainailouros . The genus saw a decline during the Late Eocene to Early Oligocene, with only one species H. weilini, being present in the Miocene. It was thought that their extinction in North America was the result of competition with carnivorans, however several studies have shown that the most likely cause of their extinction was their inability to adapt to open environments, as well as the decline of their preferred prey.

Classification and phylogeny

Taxonomy

  • Tribe: †Hyaenodontini(Leidy, 1869)
    • Genus: †Hyaenodon(Laizer & Parieu, 1838)
      • Hyaenodon brachyrhynchus(Blainville, 1841) [24]
      • Hyaenodon chunkhtensis(Dashzeveg, 1985) [25]
      • Hyaenodon dubius(Filhol, 1873) [26]
      • Hyaenodon eminus(Matthew & Granger, 1925) [27]
      • Hyaenodon exiguus(Gervais, 1873) [28]
      • Hyaenodon filholi(Schlosser, 1887) [29]
      • Hyaenodon gervaisi(Martin, 1906) [30]
      • Hyaenodon heberti(Filhol, 1876) [31]
      • Hyaenodon leptorhynchus(Laizer & Parieu, 1838) [32]
      • Hyaenodon lingbaoensis(Li, 2025) [33]
      • Hyaenodon minor(Lange-Badré, 1979) [34]
      • Hyaenodon pervagus(Matthew & Granger, 1924) [35]
      • Hyaenodon pumilus(Lavrov, 2019) [36]
      • Hyaenodon requieni(Gervais, 1846) [37]
      • Hyaenodon rossignoli(Lange-Badré, 1979)
      • Hyaenodon weilini(Wang, 2005) [38]
      • Hyaenodon yuanchuensis(Young, 1937) [39]
      • Subgenus: †Neohyaenodon(paraphyletic subgenus)(Thorpe, 1922) [40]
        • Hyaenodon gigas(Dashzeveg, 1985)
        • Hyaenodon horridus(Leidy, 1853) [41]
        • Hyaenodon incertus(Dashzeveg, 1985)
        • Hyaenodon macrocephalus(Lavrov, 1999) [3]
        • Hyaenodon megaloides(Mellett, 1977) [42]
        • Hyaenodon milvinus(Lavrov, 1999) [3]
        • Hyaenodon mongoliensis(Dashzeveg, 1964) [43]
        • Hyaenodon montanus(Douglass, 1902) [44]
        • Hyaenodon vetus(Stock, 1933) [45]
      • Subgenus: †Protohyaenodon(paraphyletic subgenus)(Stock, 1933)
        • Hyaenodon brevirostrus(Macdonald, 1970) [46]
        • Hyaenodon crucians(Leidy, 1853)
        • Hyaenodon microdon(Mellett, 1977)
        • Hyaenodon mustelinus(Scott, 1894) [47]
        • Hyaenodon raineyi(Gustafson, 1986) [48]
        • Hyaenodon venturae(Mellett, 1977)

Description

Skull of Hyaenodon horridus Hyaenodon horridus skull.jpg
Skull of Hyaenodon horridus
Life reconstruction of H. horridus Hyaenodon NT small.jpg
Life reconstruction of H. horridus

The skull of Hyaenodon was long with a narrow snout—much larger in relation to the length of the skull than in canine carnivores, for instance. The neck was shorter than the skull, while the body was long and robust and terminated in a long tail. Compared to the larger (but not closely related) Hyainailouros , the dentition of Hyaenodon was geared more towards shearing meat and less towards bone crushing. [49]

The species within the genus vary in size, with most being small to medium sized predators, while some were among the largest terrestrial carnivorous mammals of their time. [38] Intraspecific dimorphism has also been reported in the genus, although its ecological significance is unclear. H. crucians, from the early Oligocene of North America, was estimated to have weighed around 10–25 kg (22–55 lb). H. microdon and H. mustelinus, from the late Eocene of North America, were even smaller and weighed probably about 5 kg (11 lb). [50] H. filholi was the smallest European species and within the genus, weighing 2 kg (4.4 lb). The type species, H. leptorhynchus, was estimated to have weighed 11 kg (24 lb). [51]

H. horridus was one of the largest North American species. While m1 regressions suggested it could have weighed 91.8 kg (202 lb), [52] regressions based on limb morphology suggest the species was instead a bit smaller, with adults weighing 41.42 kg (91.3 lb) on average and the largest adults wouldn’t have exceeded 60 kg (130 lb). [50] H. megaloides, the largest North American species, was three times heavier than H. horridus, weighing 30–120 kg (66–265 lb). [50] It has been suggested that the size decrease among North American Hyaenodon species may have been the result of competition with nimravids. [50] In Europe, the largest species was H. geravisi, weighing 50 kg (110 lb). [51] The largest species within the genus was H. gigas and H. mongoliensis, both species had a skull length of 60 cm (2.0 ft) and are similar in size to Hyainailouros. [53] H. weilini was another very large species, described to be similar in size to H. gigas and H. mongoliensis. [38]

Paleobiology

Predatory behavior

A 2003 study found that based on elbow morphology H. horridus was a cursorial predator and was the most cursorially adapted Oligocene carnivore within the study. [54] Furthermore, a 2025 study found that based on elbow morphology found that H. crucians and H. horridus were a pounce-pursuit predators. [55] Much like H. horridus, H. eminus, H. gigas, and H. pervagus were recovered as a cursorial predators. [56] On the other hand, analysis on the bony labyrinth of H. exiguus suggests this species was semi-arboreal and occupied a hyena-like niche. [22]

The Hunter-Schreger bands observed in the tooth enamel of H. horridus are zigzag, suggesting that this species was osteophagous, whereas those of H. brevirostris and H. mustelinus transition from undulating at the base of the tooth to zigzag at the tip, indicating that these species were not as well adapted for feeding on bone. [57] Dental microwear patterns suggest that North American Hyaenodon diet was more similar to lions, on the other hand European Hyaenodon microwear was more similar to spotted hyenas and bone crushing was likely a part of their diet. [58] The tooth wearing on P4 of H. gigas suggests the primary function of the tooth was bone-cracking. [38] A 2024 study found that canine bite mechanic efficiency increased with tooth macrowear in Hyaenodon. [59]

Tooth eruption

Studies on juvenile Hyaenodon specimens show that the animal had a very unusual system of tooth replacement. Juveniles took about 3–4 years to complete the final stage of eruption, implying a long adolescent phase. In North American forms, the first upper premolar erupts before the first upper molar, while European forms show an earlier eruption of the first upper molar. [60]

Brain anatomy

While it has typically been assumed that Hyaenodon had a very massive skull, but a small brain, this has been called into question, as a recent study found that hyaenodonts, including Hyaenodon, had encephalization quotient similar to basal and some modern carnivorans such as cougars, Hesperocyon gregarius , Hoplophoneus primaevus , and striped hyena. [61] The endocast of Hyaenodon stands out from other Hyaenodontoids as they had relatively high EQ, in addition to relatively gyrencephalic and neocorticalized brains, although the increase in EQ for the genus is still unknown. [62]

Paleoecology

Reconstruction of Hyaenodon by Heinrich Harder (around 1920) Hyaenodon Heinrich Harder.jpeg
Reconstruction of Hyaenodon by Heinrich Harder (around 1920)

The various species of Hyaenodon competed with each other and with other hyaenodont genera (including Sinopa , Dissopsalis and Hyainailurus ), and played important roles as predators in ecological communities as late as the Early Miocene in Asia and preyed on a variety of prey species such as early horses like Mesohippus , brontotheres, early camels, oreodonts and even early rhinos. [49]

Reconstruction of H. horridus and Leptomeryx evansi by W. B. Scott (1913) Hyaenodon and Leptomeryx.jpg
Reconstruction of H. horridus and Leptomeryx evansi by W. B. Scott (1913)

H. horridus roamed North America from 36.5 to 31.4 Ma. [63] This species was found in the Calf Creek locality of Cypress Hills Formation. It would've coexisted with hyaenodonts such as H. microdon and hyainailourid Hemipsalodon grandis . Carnivorans that were present in this formation were daphoeninae amphicyonids Brachyrhynchocyon dodgei and Daphoneus , nimravids Dinictis and Hoplophoneus , hesperocyonine canid Hesperocyon gregarius , and the subparictid Parictis. [64] [65] The predators present in Calf Creek likely practiced niche partitioning via different body sizes, with H. horridus focusing on prey that weighed 166 kg (366 lb). [66]

H. horridus was also found in Brule Formation of South Dakota. Contemporary predators would've included the nimravid Hoplophoneus, amphicyonid Daphoneus, fellow species H. crucians, and entelodont Archaeotherium mortoni . Herbivores present include hypertragulid Hypertragulus calcaratus , leptomerycid Leptomeryx evansi , and oreodonts Merycoidodon culbertsonii and Miniochoerus affinis . [67]

Fossil evidence suggests that H. horridus could've predate on other large carnivores smaller than itself, such as Dinictis. [68] [69]

In Europe, both H. geravisi and H. leptorhynchus were found in Séon Saint-André. Carnivorans present in this locality were amphicyonids Cynelos rugosidens and Pseudocyonopsisambiguus. All predators within this locality are believed to have practiced some niche partitioning. H. leptorhynchus is believed to have hunted small artiodactyls such as Bachitherium and Mosaicomeryx . However the larger predators would've hunted larger artiodactyls such as Anthracotherium cuvieri and Elomeryx borbonicus and perissodactyls such as Protaceratherium albigense and Ronzotherium romani . H. geravisi and Pseudocyonopsis were believed to competed for the same prey due to being similar in size to one another. Although, it is possible they preferred different environments as Hyaenodon was a cursorial predator and likely preferred open environments compared to amphicyonids, who preferred more closed environments such as forests. [51]

In East Asia, H. gigas lived during the Early Oligocene. [23] Within Khoer-Dzan, H. gigas coexisted with other predators like hyaenodonts H. eminus, H. incertus, H. mongoliensis, and H. pervagus, nimravids Eofelis and Nimravus intermedius , and entelodonts Brachyhyops trofimovi and Entelodon gobiensis . [70]

Extinction

During the middle to late Eocene, hyaenodonts experienced a decline in diversity with only one genus consisting of a few species by the end of the Eocene in North America. [71] With H. brevirostrus being the last species in North America, which disappeared in the late Oligocene. [72] In Europe, they had already vanished earlier in the Oligocene, with the youngest species, H. weilini, persisting in the early Miocene of China. [38] The cause of their extinction has been debated by experts, with many suggesting that their extinction was due to competition with carnivorans. [73] [71] [74] Lang et al. (2021) argues the success of carnivorans compared to hyaenodonts was likely due to the retention of a basal morphotype throughout their evolutionary history. They also suggest that carnivorans possibly played a role in the extinction of hyaenodonts, probably due to the adaptive potential of their carnassials. [75] Serio et al. (2024) found that North American “creodonts” had a significant degree of morphological differentiation until the middle Eocene, with disparity among carnivorans increasing around the same time. The authors argue that carnivoran disparity negatively impacted the disparity of creodonts, suggesting carnivorans may have competitively replaced hyaenodonts. [74]

However, this has been contested by many experts, who argued instead their extinction correlated with abiotic changes in their environments. [66] [55] Christison et al. (2022) found that only small hyaenodonts and smaller carnivorans had a significant niche overlap compared to large hyaenodonts and carnivorans. This suggests competition with carnivorans couldn't have been the driver of the extinction of North American hyaenodonts in the Late Eocene. Instead, they argued the highly specialized niche of hyaenodonts enhanced their extinction rates. The global cooling of the early Oligocene resulted in the extinction of large browsers such as brontotheres, as ecosystems became drier and more open. Brontotheres were replaced by equids and rhinoceroses, who were better adapted for open environments. But rhinoceroses wouldn’t reach large sizes until the Miocene epoch, leaving the gap of accessible large herbivores for the large, hypercarnivorous hyaenodonts. Furthermore, hyaenodonts tend to have relatively short legs, which may have been a disadvantage in open environments and likely played a role in their extinction. [66] Castellanos found that despite hyaenodonts showing adaptations towards cursoriality, because of their short distal limbs, hyaenodonts couldn’t exploit open environments as well as amphicyonids, which may have resulted in their extinction and addition to the low diversity of the clade by the start of the Oligocene. [55]

Additionally in Europe, Hyaenodon and amphicyonids preferred different environments, with the former hunting in more open environments suggesting niche partitioning between the two predators. [51]

References

  1. Leidy J. (1869). "On the extinct Mammalia of Dakota and Nebraska: including an account of some allied forms from other localities, together with a synopsis of the mammalian remains of North America." Journal of the Academy of Natural Sciences Philadelphia 7: 1–472.
  2. J. Alroy (2002). "Synonymies and reidentifications of North American fossil mammals."
  3. 1 2 3 4 A. V. Lavrov (1999.) "Adaptive Radiation of Hyaenodontinae (Creodonta, Hyaenodontidae) of Asia." in 6th Congress of the Theriological Society, Moscow, April 13–16, p. 138 [in Russian].
  4. F. J. Pictet (1853.) "Traité de Paléontologie." I (2e edit.):584 p. + atlas 110 pl.
  5. F. Dujardin (1840.) "Note sur une tête fossile Hyaenodon trouvée au bord du Tarn, près de Rabastens." Comptes-Rendus de l'Académie des Sciences de Paris, 10:134-135
  6. Ch. Laurillard (1845.) "Hyaenodon." in: d'Orbigny: "Dictionnaire Universel d'Histoire naturelle 1-6": 767-769, Renard, Martinet édit., Paris
  7. A. Pomel (1846.) "Note sur le Pterodon, genre voisin des Dasyures dont plusieurs espèces ont été trouvées dans les terrains tertiaires." Bulletin de la Société Géologique de France, 4(2):385-393
  8. R. M. Joeckel, H. W. Bond and G. W. Kabalka (1997). "Internal Anatomy of the Snout and Paranasal Sinuses of Hyaenodon (Mammalia, Creodonta)" Journal of Vertebrate Paleontology, Vol. 17, No. 2, pp. 440-446
  9. W. B. Scott (1888). "On some new and little know creodonts." Journal of the Academy of Natural Sciences of Philadelphia 9:155-185
  10. H. F. Osborn and J. L. Wortman (1894). "Fossil mammals of the Lower Miocene White River beds. Collection of 1892." Bulletin of the American Museum of Natural History 6(7):199-228
  11. H. Filhol (1882). "Étude des Mammifères de Ronzon (Haute-Loire)." Ann. Sci. géol., Paris, 12(3):270 p., 25 pl.
  12. Depéret C. (1917). "Monographie de la faune de mammiféres fossiles du Ludien inférieur d'Euget-les-Bains (Gard)." Ann. Univ. Lyon (N. S.), Div. 1, 40, 1-288.
  13. Kretzoi, M. (1941). "Ausländische Säugetierfossilien der Ungarischen Museen. (1-4)" Földtani Közlöny, vol. 71, nos. 4-6, pp. 1-6
  14. P. D. Polly (1993.) "Hyaenodontidae (Creodonta, Mammalia) from the Early Eocene Four Mile Fauna and their biostratigraphic implications." PaleoBios, Vol. 14, No. 4, pp. 1-10
  15. R. Dehm (1935). "Über tertiäre Spaltenfüllungen im Fränkischen und Schwäbischen Jura [On Tertiary fissure fillings in the Franconian and Swabian Jura]." Abhandlungen der Bayerischen Akademie der Wissenschaften Mathematisch-naturwissenschaftliche Abteilung, Neue Folge 29:1-86
  16. Forster Cooper, C. (1926). "Hyænodon aimi, sp. n., and a note on the occurrence of Anthracotherium minus from the Headon Beds at Hordle." Annals and Magazine of Natural History (9)18(106):370–373
  17. R. Lydekker (1884.) "Notes on some fossil Carnivora and Rodentia." Geol. Mag., London, (3)1:442-445, 2 figs.
  18. Michael Morlo, Doris Nagel (2006). "New remains of Hyaenodontidae (Creodonta, Mammalia) from the Oligocene of Central Mongolia." Annales de Paléontologie 92(3):305-321
  19. L. Van Valen (1967). "New Paleocene insectivores and insectivore classification." Bulletin of the American Museum of Natural History 135(5):217-284
  20. Huang, Xue-Shi; Zhu, Bao-Cheng (15 March 2002). "Creodont (mammalia) remains from the Early Oligocene of Ulantatal, Nei Mongol". Vertebrata PalAsiatica. 40 (1): 17. ISSN   2096-9899 . Retrieved 19 November 2023.
  21. Malcolm C. McKenna, Susan K. Bell (1997). "Classification of Mammals: Above the Species Level", Columbia University Press, New York, 631 pages. Hyaenodon
  22. 1 2 Pfaff, Cathrin; Nagel, Doris; Gunnell, Gregg; Weber, Gerhard W.; Kriwet, Jürgen; Morlo, Michael; Bastl, Katharina (25 September 2016). "Palaeobiology of Hyaenodon exiguus (Hyaenodonta, Mammalia) based on morphometric analysis of the bony labyrinth". Journal of Anatomy . 230 (2): 282–289. doi:10.1111/joa.12545. PMC   5244453 . PMID   27666133.
  23. 1 2 Bastl, Katharina Anna; Morlo, Michael; Nagel, Doris (2011). "Differences in the Tooth Eruption Sequence in Hyaenodon ('Creodonta': Mammalia) and Implications for the Systematics of the Genus". Journal of Vertebrate Paleontology. 31 (1): 181–192. doi:10.1080/02724634.2011.540052.
  24. Henri Marie Ducrotay de Blainville (1841.) "Ostéographie ou description iconographique comparée du squelette et du système dentaire des mammifères récents et fossiles." Tome 2: Secondates et Subursus, 123 p.; Viverras, 100 p. et atlas, 117 pl. Baillėte édit. Paris.
  25. Dashzeveg D. (1985.) "Nouveau Hyaenodontinae (Creodonta, Mammalia) du Paléogène de Mongolie." Annales de Paléontologie 71:223–256
  26. Filhol, H. (1873.) "Sur les Vertébrés fossiles trouvés dans les dépôts de phosphate de chaux du Quercy." Bull. Soc. Pholomath. Paris (6) 10, 85-89.
  27. Matthew W. D. & Granger W. (1925.) "New creodonts and rodents from the Ardyn Obo Formation of Mongolia." American Museum Novitates 193:1–11.
  28. Gervais P. (1873.) "Mammifères dont les ossements accompagnent les dépôts de chaux phosphatée des départements du Tarn-et.Garonne et du Lot." Journal de Zoologie, Paris, 2:356-380
  29. M. Schlosser (1887.) "Die Affen, Lemuren, Chiropteren, Insectivoren, Marsupialier, Creodonten und Carnivoren des Europaischen Tertiars." Beitrage zur Paleontologie Osterreich-Ungarns un des Orients 6:1-224
  30. R. Martin (1906.) "Revision der obereocænen und unteroligocænen Creodonten Europas." Rev. Suisse Zool., 14, (3), pp. 405-500
  31. H. Filhol (1876.) "Recherches sur les phospohorites du Quercy. Étude des fossiles qi'on y rencontre et spécialement des Mammifères." Annales des Sciences Géologiques, Paris, 7(7):220 p., pl. 11-36; 1877:art. 1, 340 p., 28 pl.
  32. Laizer, L. D. and Parieu, D. (1838.) "Description et détermination d'une mâchoire fossile appartenant à un mammifère jusqu'à présent inconnu, Hyaenodon leptorhynchus." Comptes Rendus de l'Académie des Sciences Paris, 7:442
  33. Li, Q.; Sheng, J. Q.; Bi, A.; Li, Q. (2025). "A new small Hyaenodon (Hyaenodonta: Hyaenodontinae) from the Eocene Lingbao Basin, Henan Province, China" . The Anatomical Record ar.25668. doi:10.1002/ar.25668. PMID   40186436.
  34. Lange-Badré, B. (1979.) "Les créodontes (Mammalia) d'Europe occidentale de l'Éocène supérieur à l'Oligocène supérieur." Mémoires du Muséum National d'Histoire Naturelle 42: 1–249
  35. W. D. Matthew and W. Granger (1924.) "New Carnivora from the Tertiary of Mongolia." American Museum Novitates 104:1-9
  36. A. V. Lavrov (2019). "New material on small hyenodons Hyaenodontinae, Creodonta) from the Paleogene of Mongolia" . Paleontological Journal. 53 (4): 418–431. Bibcode:2019PalJ...53..418L. doi:10.1134/S0031030119040063. S2CID   201654889.
  37. Gervais P. (1846.) "Mémoire sur quelques Mammifères fossiles du Vaucluse." Comptes rendus hebdomadaires des séances de l'Académie des sciences, Paris, T. 22, pp. 845-846.
  38. 1 2 3 4 5 X. Wang, Z. Qiu and B. Wang (2005.) "Hyaenodonts and carnivorans from the early Oligocene to early Miocene of the Xianshuihe Formation, Lanzhou Basin, Gansu Province, China." Palaeontologia Electronica, Vol. 8, Issue 1; 6A: Pages 1-14
  39. C. Young (1937.) "An early Tertiary vertebrate fauna from Yuanchü." Bulletin of the geological society of China 17(3-4):413-438
  40. M. R. Thorpe (1922.) "A new genus of Oligocene Hyaenodontidae." American Journal of Science 3(16):277-287
  41. Leidy, J. (1853.) "Remarks on a collection of fossil Mammalia from Nebraska." Proceedings of the Academy of Natural Sciences, Philadelphia, 6:392-394.
  42. J. S. Mellett (1977.) "Paleobiology of North American Hyaenodon (Mammalia, Creodonta)." Contributions to Vertebrate Evolution 1:1-134
  43. D. Dashzeveg (1964.) "On two Oligocene Hyaenodontidae from Erghilyin-Dzo (Mongolian People's Republic)." Acta Palaeontologica Polonica 9(2):263-274
  44. E. Douglass (1902.) "Fossil Mammalia of the White River beds of Montana." Transactions of the American Philosophical Society 20:237-279
  45. C. Stock (1933.) "Hyaenodontidae of the Upper Eocene of California." Proceedings of the National Academy of Sciences 19(4):434-440
  46. J. R. Macdonald (1970.) "Review of the Miocene Wounded Knee faunas of southwestern South Dakota." Bulletin of the Los Angeles County Museum of Natural History, Science 8:165-82
  47. William Berryman Scott (1894.) "The osteology of Hyaenodon" Journal of Academy of Natural Sciences, Philadelphia (2), 9, 291-323
  48. E. P. Gustafson (1986.) "Carnivorous mammals of the Late Eocene and Early Oligocene of Trans-Pecos Texas." Texas Memorial Museum Bulletin 33:1-66
  49. 1 2 Wang, Xiaoming; Tedford, Richard H. (2008). Dogs: Their Fossil Relatives and Evolutionary History. New York: Columbia University Press. p. 1. doi:10.7312/wang13528. ISBN   978-0-231-13528-3. JSTOR   10.7312/wang13528.
  50. 1 2 3 4 Egi, Naoko (2001). "Body mass estimates in extinct mammals from limb bone dimensions: the case of North American hyaenodontids". Palaeontology. 44 (3): 497–528. Bibcode:2001Palgy..44..497E. doi: 10.1111/1475-4983.00189 . S2CID   128832577.
  51. 1 2 3 4 Solé; Dubied; Le Verger; Mennecart (2018). "Niche partitioning of the European carnivorous mammals during the paleogene" . PALAIOS. 33 (11): 514–523. Bibcode:2018Palai..33..514S. doi:10.2110/palo.2018.022.
  52. Christison, Brigid E; Gaidies, Fred; Pineda-Munoz, Silvia; Evans, Alistair R; Gilbert, Marisa A; Fraser, Danielle (2022-01-25). Powell, Roger (ed.). "Dietary niches of creodonts and carnivorans of the late Eocene Cypress Hills Formation". Journal of Mammalogy . 103 (1): 2–17. doi:10.1093/jmammal/gyab123. ISSN   0022-2372. PMC   8789764 . PMID   35087328 . Retrieved 17 October 2024 via Oxford Academic.
  53. Morlo, Michael; Nagel, Doris (2006). "New remains of Hyaenodontidae (Creodonta, Mammalia) from the Oligocene of Central Mongolia". Annales de Paléontologie. 92 (3): 305–321. doi:10.1016/j.annpal.2005.12.001.
  54. Andersson, Ki; Werdelin, Lars (December 2003). "The evolution of cursorial carnivores in the Tertiary: Implications of elbow-joint morphology". Proceedings of the Royal Society B: Biological Sciences . 270 (Suppl 2): S163-5. doi:10.1098/rsbl.2003.0070. PMC   1809930 . PMID   14667370.
  55. 1 2 3 Castellanos, Miguel (2025). "Hunting types in North American Eocene–Oligocene carnivores and implications for the 'cat-gap'" . Journal of Mammalian Evolution . 32 (2): 1–12. doi:10.1007/s10914-025-09767-2.
  56. Morlo, Michael; Gunnell, Gregg F.; Nagel, Doris (2010). "10 - Ecomorphological analysis of carnivore guilds in the Eocene through Miocene of Laurasia". Carnivoran Evolution. Cambridge University Press. pp. 269–310. ISBN   978-1-139-19343-6.
  57. Stefen, Clara (September 1997). "The enamel of Creodonta, Arctocyonidae, and Mesonychidae (Mammalia), with special reference to the appearance of Hunter-Schreger-Bands" . Paläontologische Zeitschrift . 71 (3–4): 291–303. doi:10.1007/BF02988497. ISSN   0031-0220 . Retrieved 15 September 2024 via Springer Nature Link.
  58. Bastl, Katharina; Semprebon, Gina; Nagel, Doris (1 September 2012). "Low-magnification microwear in Carnivora and dietary diversity in Hyaenodon (Mammalia: Hyaenodontidae) with additional information on its enamel microstructure" . Palaeogeography, Palaeoclimatology, Palaeoecology . 348–349: 13–20. Bibcode:2012PPP...348...13B. doi:10.1016/j.palaeo.2012.05.026 . Retrieved 7 November 2024 via Elsevier Science Direct.
  59. Tseng, Zhijie Jack; DeSantis, Larisa R. G. (2024). "Relationship between tooth macrowear and jaw morphofunctional traits in representative hypercarnivores". PeerJ . 12 e18435. doi: 10.7717/peerj.18435 . PMC   11562772 . PMID   39544419.
  60. Bastl, Katharina Anna (2013). "First evidence of the tooth eruption sequence of the upper jaw in Hyaenodon (Hyaenodontidae, Mammalia) and new information on the ontogenetic development of its dentition". Paläontologische Zeitschrift. 88 (4): 481–494. doi:10.1007/s12542-013-0207-z. S2CID   85304920.
  61. Dubied, Morgane; Solé, Floréal; Mennecart, Bastien (29 July 2019). "The cranium of Proviverra typica (Mammalia, Hyaenodonta) and its impact on hyaenodont phylogeny and endocranial evolution". Palaeontology. 62 (6): 983–1001. Bibcode:2019Palgy..62..983D. doi: 10.1111/pala.12437 .
  62. Flink, Therese; Cote, Susanne; Rossie, James B.; Kibii, Job M.; Werdelin, Lars (March 2021). "The neurocranium of Ekweeconfractus amorui gen. et sp. nov. (Hyaenodonta, Mammalia) and the evolution of the brain in some hyaenodontan carnivores". Journal of Vertebrate Paleontology . 41 (2) e1927748. Bibcode:2021JVPal..41E7748F. doi: 10.1080/02724634.2021.1927748 . S2CID   237518007.
  63. Castellanos, Miguel (2024). Hunting Types in North American Eocene and Oligocene Carnivores and Implications for Nimravid Extinction (Graduate Research Thesis & Disserations)
  64. Bryant, Harold N. (1993). "Carnivora and Creodonta of the Calf Creek Local Fauna (Late Eocene, Chadronian), Cypress Hills Formation, Saskatchewan". Journal of Paleontology. 67 (6): 1032–1046. Bibcode:1993JPal...67.1032B. doi:10.1017/S0022336000025361. JSTOR   1306120.
  65. Christison, Brigid E; Gaidies, Fred; Pineda-Munoz, Silvia; Evans, Alistair R; Gilbert, Marisa A; Fraser, Danielle (2022-01-25). Powell, Roger (ed.). "Dietary niches of creodonts and carnivorans of the late Eocene Cypress Hills Formation". Journal of Mammalogy . 103 (1): 2–17. doi:10.1093/jmammal/gyab123. ISSN   0022-2372. PMC   8789764 . PMID   35087328 . Retrieved 17 October 2024 via Oxford Academic.
  66. 1 2 3 Christison, Brigid E; Gaidies, Fred; Pineda-Munoz, Silvia; Evans, Alistair R; Gilbert, Marisa A; Fraser, Danielle (2022-01-25). Powell, Roger (ed.). "Dietary niches of creodonts and carnivorans of the late Eocene Cypress Hills Formation". Journal of Mammalogy . 103 (1): 2–17. doi:10.1093/jmammal/gyab123. ISSN   0022-2372. PMC   8789764 . PMID   35087328 . Retrieved 17 October 2024 via Oxford Academic.
  67. PaleoBiology Database: Brule Formation
  68. John W. Hoganson and Jeff Person (2010). "Tooth puncture marks on a skull of Dinictis (Nimravidae) from the Oligocene Brule Formation of Northe Dakota attributed to predation by Hyaenodon (Hyaenodontidae)", North Dakota Geological Survey
  69. John W. Hoganson and Jeff Person (2011). "Tooth puncture marks on a 30 million year old Dinictis skull.", Geo News, p. 12-17
  70. PBDB: Khoer Dzan slope
  71. 1 2 Friscia, Anthony; Van, Valkenburgh B. (2010). "Ecomorphology of North American Eocene carnivores: evidence for competition between Carnivorans and Creodonts". Carnivoran Evolution. Cambridge University Press. pp. 311–341. doi:10.1017/CBO9781139193436.012. ISBN   978-0-521-51529-0.
  72. Van Valkenburgh, Blaire (1994). "Extinction and replacement among predatory mammals in the North American late Eocene and Oligocene: Tracking a paleoguild over twelve million years" . Historical Biology. 8 (1–4): 129–150. Bibcode:1994HBio....8..129V. doi:10.1080/10292389409380474 . Retrieved 12 April 2022.
  73. Van, Valkenburgh B. (1999). "Major patterns in the history of carnivorous mammals". Annual Review of Earth and Planetary Sciences. 27: 463–493. Bibcode:1999AREPS..27..463V. doi:10.1146/annurev.earth.27.1.463.
  74. 1 2 Serio, Carmela; Brown, Richard P.; Clauss, Marcus; Meloro, Carlo (2024). "Morphological disparity of mammalian limb bones throughout the Cenozoic: the role of biotic and abiotic factors". Palaeontology. 67 (4) e12720. Bibcode:2024Palgy..6712720S. doi: 10.1111/pala.12720 .
  75. Lang, Andreas Johann; Engler, Thomas; and Martin, Thomas (November 2021). "Dental topographic and three-dimensional geometric morphometric analysis of carnassialization in different clades of carnivorous mammals (Dasyuromorphia, Carnivora, Hyaenodonta)". Journal of Morphology. 283 (5): 91–108. doi: 10.1002/jmor.21429 . hdl: 20.500.11811/10981 . PMID   34775616.