Interpretation (model theory)

Last updated

In model theory, interpretation of a structure M in another structure N (typically of a different signature) is a technical notion that approximates the idea of representing M inside N. For example, every reduct or definitional expansion of a structure N has an interpretation in N.

Contents

Many model-theoretic properties are preserved under interpretability. For example, if the theory of N is stable and M is interpretable in N, then the theory of M is also stable.

Note that in other areas of mathematical logic, the term "interpretation" may refer to a structure, [1] [2] rather than being used in the sense defined here. These two notions of "interpretation" are related but nevertheless distinct.

Definition

An interpretation of a structure M in a structure Nwith parameters (or without parameters, respectively) is a pair where n is a natural number and is a surjective map from a subset of Nn onto M such that the -preimage (more precisely the -preimage) of every set X  Mk definable in M by a first-order formula without parameters is definable (in N) by a first-order formula with parameters (or without parameters, respectively)[ clarification needed ]. Since the value of n for an interpretation is often clear from context, the map itself is also called an interpretation.

To verify that the preimage of every definable (without parameters) set in M is definable in N (with or without parameters), it is sufficient to check the preimages of the following definable sets:

In model theory the term definable often refers to definability with parameters; if this convention is used, definability without parameters is expressed by the term 0-definable. Similarly, an interpretation with parameters may be referred to as simply an interpretation, and an interpretation without parameters as a 0-interpretation.

Bi-interpretability

If L, M and N are three structures, L is interpreted in M, and M is interpreted in N, then one can naturally construct a composite interpretation of L in N. If two structures M and N are interpreted in each other, then by combining the interpretations in two possible ways, one obtains an interpretation of each of the two structures in itself. This observation permits one to define an equivalence relation among structures, reminiscent of the homotopy equivalence among topological spaces.

Two structures M and N are bi-interpretable if there exists an interpretation of M in N and an interpretation of N in M such that the composite interpretations of M in itself and of N in itself are definable in M and in N, respectively (the composite interpretations being viewed as operations on M and on N).

Example

The partial map f from Z × Z onto Q that maps (x, y) to x/y if y ≠ 0 provides an interpretation of the field Q of rational numbers in the ring Z of integers (to be precise, the interpretation is (2, f)). In fact, this particular interpretation is often used to define the rational numbers. To see that it is an interpretation (without parameters), one needs to check the following preimages of definable sets in Q:

Related Research Articles

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable. This distinguishes it from propositional logic, which does not use quantifiers or relations; in this sense, propositional logic is the foundation of first-order logic.

<span class="mw-page-title-main">Original proof of Gödel's completeness theorem</span>

The proof of Gödel's completeness theorem given by Kurt Gödel in his doctoral dissertation of 1929 is not easy to read today; it uses concepts and formalisms that are no longer used and terminology that is often obscure. The version given below attempts to represent all the steps in the proof and all the important ideas faithfully, while restating the proof in the modern language of mathematical logic. This outline should not be considered a rigorous proof of the theorem.

Propositional calculus is a branch of logic. It is also called propositional logic, statement logic, sentential calculus, sentential logic, or sometimes zeroth-order logic. It deals with propositions and relations between propositions, including the construction of arguments based on them. Compound propositions are formed by connecting propositions by logical connectives. Propositions that contain no logical connectives are called atomic propositions.

In mathematical logic, model theory is the study of the relationship between formal theories, and their models. The aspects investigated include the number and size of models of a theory, the relationship of different models to each other, and their interaction with the formal language itself. In particular, model theorists also investigate the sets that can be defined in a model of a theory, and the relationship of such definable sets to each other. As a separate discipline, model theory goes back to Alfred Tarski, who first used the term "Theory of Models" in publication in 1954. Since the 1970s, the subject has been shaped decisively by Saharon Shelah's stability theory.

In computability theory, Kleene's recursion theorems are a pair of fundamental results about the application of computable functions to their own descriptions. The theorems were first proved by Stephen Kleene in 1938 and appear in his 1952 book Introduction to Metamathematics. A related theorem, which constructs fixed points of a computable function, is known as Rogers's theorem and is due to Hartley Rogers, Jr.

In mathematical logic, the Löwenheim–Skolem theorem is a theorem on the existence and cardinality of models, named after Leopold Löwenheim and Thoralf Skolem.

In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In mathematical logic, propositional logic and predicate logic, a well-formed formula, abbreviated WFF or wff, often simply formula, is a finite sequence of symbols from a given alphabet that is part of a formal language. A formal language can be identified with the set of formulas in the language.

In model theory, a branch of mathematical logic, two structures M and N of the same signature σ are called elementarily equivalent if they satisfy the same first-order σ-sentences.

Finite model theory is a subarea of model theory. Model theory is the branch of logic which deals with the relation between a formal language (syntax) and its interpretations (semantics). Finite model theory is a restriction of model theory to interpretations on finite structures, which have a finite universe.

Independence-friendly logic is an extension of classical first-order logic (FOL) by means of slashed quantifiers of the form and , where is a finite set of variables. The intended reading of is "there is a which is functionally independent from the variables in ". IF logic allows one to express more general patterns of dependence between variables than those which are implicit in first-order logic. This greater level of generality leads to an actual increase in expressive power; the set of IF sentences can characterize the same classes of structures as existential second-order logic.

In mathematics, Robinson arithmetic is a finitely axiomatized fragment of first-order Peano arithmetic (PA), first set out by R. M. Robinson in 1950. It is usually denoted Q. Q is almost PA without the axiom schema of mathematical induction. Q is weaker than PA but it has the same language, and both theories are incomplete. Q is important and interesting because it is a finitely axiomatized fragment of PA that is recursively incompletable and essentially undecidable.

In mathematical logic, a Boolean-valued model is a generalization of the ordinary Tarskian notion of structure from model theory. In a Boolean-valued model, the truth values of propositions are not limited to "true" and "false", but instead take values in some fixed complete Boolean algebra.

In mathematical logic, a theory is a set of sentences in a formal language. In most scenarios a deductive system is first understood from context, after which an element of a deductively closed theory is then called a theorem of the theory. In many deductive systems there is usually a subset that is called "the set of axioms" of the theory , in which case the deductive system is also called an "axiomatic system". By definition, every axiom is automatically a theorem. A first-order theory is a set of first-order sentences (theorems) recursively obtained by the inference rules of the system applied to the set of axioms.

In universal algebra and in model theory, a structure consists of a set along with a collection of finitary operations and relations that are defined on it.

In mathematical logic, a definable set is an n-ary relation on the domain of a structure whose elements satisfy some formula in the first-order language of that structure. A set can be defined with or without parameters, which are elements of the domain that can be referenced in the formula defining the relation.

An interpretation is an assignment of meaning to the symbols of a formal language. Many formal languages used in mathematics, logic, and theoretical computer science are defined in solely syntactic terms, and as such do not have any meaning until they are given some interpretation. The general study of interpretations of formal languages is called formal semantics.

In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the Runge–Kutta method. It arose from an algebraic formalism involving rooted trees that provides formal power series solutions of the differential equation modeling the flow of a vector field. It was Cayley (1857), prompted by the work of Sylvester on change of variables in differential calculus, who first noted that the derivatives of a composition of functions can be conveniently expressed in terms of rooted trees and their combinatorics.

In mathematical logic, a formula is satisfiable if it is true under some assignment of values to its variables. For example, the formula is satisfiable because it is true when and , while the formula is not satisfiable over the integers. The dual concept to satisfiability is validity; a formula is valid if every assignment of values to its variables makes the formula true. For example, is valid over the integers, but is not.

In mathematical logic, the quantifier rank of a formula is the depth of nesting of its quantifiers. It plays an essential role in model theory.

References

  1. Goldblatt, Robert (2006). "11.2 Formal Language and Semantics". Topoi : the categorial analysis of logic (2nd ed.). Mineola, N.Y.: Dover Publications. ISBN   978-0-486-31796-0. OCLC   853624133.
  2. Hodges, Wilfrid (2009). "Functional Modelling and Mathematical Models". In Meijers, Anthonie (ed.). Philosophy of technology and engineering sciences. Handbook of the Philosophy of Science. Vol. 9. Elsevier. ISBN   978-0-444-51667-1.