Johnson's SU-distribution

Last updated
Johnson's SU
Probability density function
JohnsonSU.png
Cumulative distribution function
JohnsonSU CDF.png
Parameters (real)
Support
PDF
CDF
Mean
Median
Variance
Skewness
Ex. kurtosis


The Johnson's SU-distribution is a four-parameter family of probability distributions first investigated by N. L. Johnson in 1949. [1] [2] Johnson proposed it as a transformation of the normal distribution: [1]

Contents

where .

Generation of random variables

Let U be a random variable that is uniformly distributed on the unit interval [0, 1]. Johnson's SU random variables can be generated from U as follows:

where Φ is the cumulative distribution function of the normal distribution.

Johnson's SB-distribution

N. L. Johnson [1] firstly proposes the transformation :

where .

Johnson's SB random variables can be generated from U as follows:

The SB-distribution is convenient to Platykurtic distributions (Kurtosis). To simulate SU, sample of code for its density and cumulative distribution function is available here

Applications

Johnson's -distribution has been used successfully to model asset returns for portfolio management. [3] This comes as a superior alternative to using the Normal distribution to model asset returns. An R package, JSUparameters, was developed in 2021 to aid in the estimation of the parameters of the best-fitting Johnson's -distribution for a given dataset. Johnson distributions are also sometimes used in option pricing, so as to accommodate an observed volatility smile; see Johnson binomial tree.

An alternative to the Johnson system of distributions is the quantile-parameterized distributions (QPDs). QPDs can provide greater shape flexibility than the Johnson system. Instead of fitting moments, QPDs are typically fit to empirical CDF data with linear least squares.

Johnson's -distribution is also used in the modelling of the invariant mass of some heavy mesons in the field of B-physics. [4]

Related Research Articles

<span class="mw-page-title-main">Bessel function</span> Families of solutions to related differential equations

Bessel functions, first defined by the mathematician Daniel Bernoulli and then generalized by Friedrich Bessel, are canonical solutions y(x) of Bessel's differential equation

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Exponential distribution</span> Probability distribution

In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution. It is the continuous analogue of the geometric distribution, and it has the key property of being memoryless. In addition to being used for the analysis of Poisson point processes it is found in various other contexts.

<span class="mw-page-title-main">Gamma distribution</span> Probability distribution

In probability theory and statistics, the gamma distribution is a two-parameter family of continuous probability distributions. The exponential distribution, Erlang distribution, and chi-squared distribution are special cases of the gamma distribution. There are two equivalent parameterizations in common use:

  1. With a shape parameter and a scale parameter .
  2. With a shape parameter and an inverse scale parameter , called a rate parameter.

In mathematical physics, n-dimensional de Sitter space is a maximally symmetric Lorentzian manifold with constant positive scalar curvature. It is the Lorentzian analogue of an n-sphere.

A directional derivative is a concept in multivariable calculus that measures the rate at which a function changes in a particular direction at a given point.

In physics, the Hamilton–Jacobi equation, named after William Rowan Hamilton and Carl Gustav Jacob Jacobi, is an alternative formulation of classical mechanics, equivalent to other formulations such as Newton's laws of motion, Lagrangian mechanics and Hamiltonian mechanics.

In differential geometry, the Laplace–Beltrami operator is a generalization of the Laplace operator to functions defined on submanifolds in Euclidean space and, even more generally, on Riemannian and pseudo-Riemannian manifolds. It is named after Pierre-Simon Laplace and Eugenio Beltrami.

<span class="mw-page-title-main">Universal Transverse Mercator coordinate system</span> Map projection system

The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from global latitude/longitude in that it divides earth into 60 zones and projects each to the plane as a basis for its coordinates. Specifying a location means specifying the zone and the x, y coordinate in that plane. The projection from spheroid to a UTM zone is some parameterization of the transverse Mercator projection. The parameters vary by nation or region or mapping system.

<span class="mw-page-title-main">Noncentral chi-squared distribution</span> Noncentral generalization of the chi-squared distribution

In probability theory and statistics, the noncentral chi-squared distribution is a noncentral generalization of the chi-squared distribution. It often arises in the power analysis of statistical tests in which the null distribution is a chi-squared distribution; important examples of such tests are the likelihood-ratio tests.

Expected shortfall (ES) is a risk measure—a concept used in the field of financial risk measurement to evaluate the market risk or credit risk of a portfolio. The "expected shortfall at q% level" is the expected return on the portfolio in the worst of cases. ES is an alternative to value at risk that is more sensitive to the shape of the tail of the loss distribution.

In financial mathematics, tail value at risk (TVaR), also known as tail conditional expectation (TCE) or conditional tail expectation (CTE), is a risk measure associated with the more general value at risk. It quantifies the expected value of the loss given that an event outside a given probability level has occurred.

<span class="mw-page-title-main">Skew normal distribution</span> Probability distribution

In probability theory and statistics, the skew normal distribution is a continuous probability distribution that generalises the normal distribution to allow for non-zero skewness.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

In mathematics, the Plancherel theorem for spherical functions is an important result in the representation theory of semisimple Lie groups, due in its final form to Harish-Chandra. It is a natural generalisation in non-commutative harmonic analysis of the Plancherel formula and Fourier inversion formula in the representation theory of the group of real numbers in classical harmonic analysis and has a similarly close interconnection with the theory of differential equations. It is the special case for zonal spherical functions of the general Plancherel theorem for semisimple Lie groups, also proved by Harish-Chandra. The Plancherel theorem gives the eigenfunction expansion of radial functions for the Laplacian operator on the associated symmetric space X; it also gives the direct integral decomposition into irreducible representations of the regular representation on L2(X). In the case of hyperbolic space, these expansions were known from prior results of Mehler, Weyl and Fock.

<span class="mw-page-title-main">Cnoidal wave</span> Nonlinear and exact periodic wave solution of the Korteweg–de Vries equation

In fluid dynamics, a cnoidal wave is a nonlinear and exact periodic wave solution of the Korteweg–de Vries equation. These solutions are in terms of the Jacobi elliptic function cn, which is why they are coined cnoidal waves. They are used to describe surface gravity waves of fairly long wavelength, as compared to the water depth.

In computational fluid dynamics, the Stochastic Eulerian Lagrangian Method (SELM) is an approach to capture essential features of fluid-structure interactions subject to thermal fluctuations while introducing approximations which facilitate analysis and the development of tractable numerical methods. SELM is a hybrid approach utilizing an Eulerian description for the continuum hydrodynamic fields and a Lagrangian description for elastic structures. Thermal fluctuations are introduced through stochastic driving fields. Approaches also are introduced for the stochastic fields of the SPDEs to obtain numerical methods taking into account the numerical discretization artifacts to maintain statistical principles, such as fluctuation-dissipation balance and other properties in statistical mechanics.

<span class="mw-page-title-main">Relativistic angular momentum</span> Angular momentum in special and general relativity

In physics, relativistic angular momentum refers to the mathematical formalisms and physical concepts that define angular momentum in special relativity (SR) and general relativity (GR). The relativistic quantity is subtly different from the three-dimensional quantity in classical mechanics.

In mathematics, the Poisson boundary is a measure space associated to a random walk. It is an object designed to encode the asymptotic behaviour of the random walk, i.e. how trajectories diverge when the number of steps goes to infinity. Despite being called a boundary it is in general a purely measure-theoretical object and not a boundary in the topological sense. However, in the case where the random walk is on a topological space the Poisson boundary can be related to the Martin boundary, which is an analytic construction yielding a genuine topological boundary. Both boundaries are related to harmonic functions on the space via generalisations of the Poisson formula.

<span class="mw-page-title-main">Dual graviton</span> Hypothetical particle found in supergravity

In theoretical physics, the dual graviton is a hypothetical elementary particle that is a dual of the graviton under electric-magnetic duality, as an S-duality, predicted by some formulations of supergravity in eleven dimensions.

References

  1. 1 2 3 Johnson, N. L. (1949). "Systems of Frequency Curves Generated by Methods of Translation". Biometrika . 36 (1/2): 149–176. doi:10.2307/2332539. JSTOR   2332539.
  2. Johnson, N. L. (1949). "Bivariate Distributions Based on Simple Translation Systems". Biometrika . 36 (3/4): 297–304. doi:10.1093/biomet/36.3-4.297. JSTOR   2332669.
  3. Tsai, Cindy Sin-Yi (2011). "The Real World is Not Normal" (PDF). Morningstar Alternative Investments Observer.
  4. As an example, see: LHCb Collaboration (2022). "Precise determination of the oscillation frequency". Nature Physics. 18: 1–5. arXiv: 2104.04421 . doi: 10.1038/s41567-021-01394-x .

Further reading