Kissing number problem

Last updated

In geometry, a kissing number is defined as the number of non-overlapping unit spheres that can be arranged such that they each touch a common unit sphere. For a lattice packing the kissing number is the same for every sphere, but for an arbitrary sphere packing the kissing number may vary from one sphere to another. Other names for kissing number that have been used are Newton number (after the originator of the problem), and contact number.

Geometry Branch of mathematics that studies the shape, size and position of objects

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer.

Sphere round geometrical and circular object in three-dimensional space; special case of spheroid

A sphere is a perfectly round geometrical object in three-dimensional space that is the surface of a completely round ball.

Lattice (group) subgroup of a real vector space or a Lie group

In geometry and group theory, a lattice in is a subgroup of the additive group which is isomorphic to the additive group , and which spans the real vector space . In other words, for any basis of , the subgroup of all linear combinations with integer coefficients of the basis vectors forms a lattice. A lattice may be viewed as a regular tiling of a space by a primitive cell.

Contents

In general, the kissing number problem seeks the maximum possible kissing number for n-dimensional spheres in (n + 1)-dimensional Euclidean space. Ordinary spheres correspond to two-dimensional closed surfaces in three-dimensional space.

<i>n</i>-sphere generalization of the ordinary sphere to spaces of arbitrary dimension

In mathematics, the n-sphere is the generalization of the ordinary sphere to spaces of arbitrary dimension. It is an n-dimensional manifold that can be embedded in Euclidean (n + 1)-space.

Euclidean space Generalization of Euclidean geometry to higher dimensions

In geometry, Euclidean space encompasses the two-dimensional Euclidean plane, the three-dimensional space of Euclidean geometry, and similar spaces of higher dimension. It is named after the Ancient Greek mathematician Euclid of Alexandria. The term "Euclidean" distinguishes these spaces from other types of spaces considered in modern geometry. Euclidean spaces also generalize to higher dimensions.

Finding the kissing number when centers of spheres are confined to a line (the one-dimensional case) or a plane (two-dimensional case) is trivial. Proving a solution to the three-dimensional case, despite being easy to conceptualise and model in the physical world, eluded mathematicians until the mid-20th century. [1] [2] Solutions in higher dimensions are considerably more challenging, and only a handful of cases have been solved exactly. For others investigations have determined upper and lower bounds, but not exact solutions. [3]

Known greatest kissing numbers

In one dimension, the kissing number is 2:

Kissing-1d.svg

In two dimensions, the kissing number is 6:

Kissing-2d.svg

Proof: Consider a circle with center C that is touched by circles with centers C1, C2, .... Consider the rays CCi. These rays all emanate from the same center C, so the sum of angles between adjacent rays is 360°.

Assume by contradiction that there are more than six touching circles. Then at least two adjacent rays, say CC1 and CC2, are separated by an angle of less than 60°. The segments C Ci have the same length – 2r – for all i. Therefore, the triangle CC1C2 is isosceles, and its third side – C1C2 – has a side length of less than 2r. Therefore, the circles 1 and 2 intersect – a contradiction. [4]

A highly symmetrical realization of the kissing number 12 in three dimensions is by aligning the centers of outer spheres with vertices of a regular icosahedron. This leaves slightly more than 0.1 of the radius between two nearby spheres. Kissing-3d.png
A highly symmetrical realization of the kissing number 12 in three dimensions is by aligning the centers of outer spheres with vertices of a regular icosahedron. This leaves slightly more than 0.1 of the radius between two nearby spheres.

In three dimensions, the kissing number is 12, but the correct value was much more difficult to establish than in dimensions one and two. It is easy to arrange 12 spheres so that each touches a central sphere, but there is a lot of space left over, and it is not obvious that there is no way to pack in a 13th sphere. (In fact, there is so much extra space that any two of the 12 outer spheres can exchange places through a continuous movement without any of the outer spheres losing contact with the center one.) This was the subject of a famous disagreement between mathematicians Isaac Newton and David Gregory. Newton correctly thought that the limit was 12; Gregory thought that a 13th could fit. Some incomplete proofs that Newton was correct were offered in the nineteenth century, most notably one by Reinhold Hoppe, but the first correct proof (according to Brass, Moser, and Pach) did not appear until 1953. [1] [2] [5]

Isaac Newton Influential British physicist and mathematician

Sir Isaac Newton was an English mathematician, physicist, astronomer, theologian, and author who is widely recognised as one of the most influential scientists of all time, and a key figure in the scientific revolution. His book Philosophiæ Naturalis Principia Mathematica, first published in 1687, laid the foundations of classical mechanics. Newton also made seminal contributions to optics, and shares credit with Gottfried Wilhelm Leibniz for developing the infinitesimal calculus.

David Gregory (mathematician) Scottish astronomer and mathematician

David Gregory FRS was a Scottish mathematician and astronomer. He was professor of mathematics at the University of Edinburgh, and later Savilian Professor of Astronomy at the University of Oxford, and a proponent of Isaac Newton's Principia.

Ernst Reinhold Eduard Hoppe was a German mathematician who worked as a professor at the University of Berlin.

The twelve neighbors of the central sphere correspond to the maximum bulk coordination number of an atom in a crystal lattice in which all atoms have the same size (as in a chemical element). A coordination number of 12 is found in a cubic close-packed or a hexagonal close-packed structure.

In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central ion/molecule/atom is called a ligand. This number is determined somewhat differently for molecules than for crystals.

In four dimensions, it was known for some time that the answer was either 24 or 25. It is easy to produce a packing of 24 spheres around a central sphere (one can place the spheres at the vertices of a suitably scaled 24-cell centered at the origin). As in the three-dimensional case, there is a lot of space left over—even more, in fact, than for n = 3—so the situation was even less clear. In 2003, Oleg Musin proved the kissing number for n = 4 to be 24, using a subtle trick. [6] [7]

The kissing number in n dimensions is unknown for n > 4, except for n = 8 (240), and n = 24 (196,560). [8] [9] The results in these dimensions stem from the existence of highly symmetrical lattices: the E8 lattice and the Leech lattice.

If arrangements are restricted to lattice arrangements, in which the centres of the spheres all lie on points in a lattice, then this restricted kissing number is known for n = 1 to 9 and n = 24 dimensions. [10] For 5, 6, and 7 dimensions the arrangement with the highest known kissing number found so far is the optimal lattice arrangement, but the existence of a non-lattice arrangement with a higher kissing number has not been excluded.

Some known bounds

The following table lists some known bounds on the kissing number in various dimensions. [3] The dimensions in which the kissing number is known are listed in boldface.

Rough volume estimates show that kissing number in n dimensions grows exponentially in n. The base of exponential growth is not known. The grey area in the above plot represents the possible values between known upper and lower bounds. Circles represent values that are known exactly. Kissing growth.svg
Rough volume estimates show that kissing number in n dimensions grows exponentially in n. The base of exponential growth is not known. The grey area in the above plot represents the possible values between known upper and lower bounds. Circles represent values that are known exactly.
DimensionLower
bound
Upper
bound
12
2 6
3 12
4 24 [6]
5 40 44
6 72 78
7 126 134
8 240
9306364
10500554
11582870
128401,357
131,154 [11] 2,069
141,606 [11] 3,183
152,5644,866
164,3207,355
175,34611,072
187,39816,572
1910,66824,812
2017,40036,764
2127,72054,584
2249,89682,340
2393,150124,416
24 196,560

Generalization

The kissing number problem can be generalized to the problem of finding the maximum number of non-overlapping congruent copies of any convex body that touch a given copy of the body. There are different versions of the problem depending on whether the copies are only required to be congruent to the original body, translates of the original body, or translated by a lattice. For the regular tetrahedron, for example, it is known that both the lattice kissing number and the translative kissing number are equal to 18, whereas the congruent kissing number is at least 56. [12]

Algorithms

There are several approximation algorithms on intersection graphs where the approximation ratio depends on the kissing number. [13] For example, there is a polynomial-time 10-approximation algorithm to find a maximum non-intersecting subset of a set of rotated unit squares.

Mathematical statement

The kissing number problem can be stated as the existence of a solution to a set of inequalities. Let be a set of ND-dimensional position vectors of the centres of the spheres. The condition that this set of spheres can lie round the centre sphere without overlapping is:

  [14]

Thus the problem for each dimension can be expressed in the existential theory of the reals. However, general methods of solving problems in this form take at least exponential time which is why this problem has only been solved up to 4 dimensions. By adding additional variables, this can be converted to a single quartic equation in N(N-1)/2 + DN variables:

  [15]

Therefore, to solve the case in D = 5 dimensions and N =  40  + 1 vectors would be equivalent to determining the existence of real solutions to a quartic polynomial in 1025 variables. For the D = 24 dimensions and N =  196560  + 1, the quartic would have 19,322,732,544 variables. An alternative statement in terms of distance geometry is given by the distances squared between then mth and nth sphere.

This must be supplemented with the condition that the Cayley–Menger determinant is zero for any set of points which forms an (D + 1) simplex in D dimensions, since that volume must be zero. Setting gives a set of simultaneous polynomial equations in just y which must be solved for real values only. The two methods, being entirely equivalent, have various different uses. For example, in the second case one can randomly alter the values of the y by small amounts to try and minimise the polynomial in terms of the y.

See also

Notes

  1. 1 2 Conway, John H.; Neil J.A. Sloane (1999). Sphere Packings, Lattices and Groups (3rd ed.). New York: Springer-Verlag. p.  21. ISBN   0-387-98585-9.
  2. 1 2 Brass, Peter; Moser, W. O. J.; Pach, János (2005). Research problems in discrete geometry. Springer. p.  93. ISBN   978-0-387-23815-9.
  3. 1 2 Mittelmann, Hans D.; Vallentin, Frank (2009). "High accuracy semidefinite programming bounds for kissing numbers". Experimental Mathematics . 19: 174–178. arXiv: 0902.1105 . Bibcode:2009arXiv0902.1105M.
  4. See also Lemma 3.1 in Marathe, M. V.; Breu, H.; Hunt, H. B.; Ravi, S. S.; Rosenkrantz, D. J. (1995). "Simple heuristics for unit disk graphs". Networks. 25 (2): 59. arXiv: math/9409226 . doi:10.1002/net.3230250205.
  5. Zong, Chuanming (2008), "The kissing number, blocking number and covering number of a convex body", in Goodman, Jacob E.; Pach, J├ínos; Pollack, Richard (eds.), Surveys on Discrete and Computational Geometry: Twenty Years Later (AMS-IMS-SIAM Joint Summer Research Conference, June 18ÔÇô22, 2006, Snowbird, Utah), Contemporary Mathematics, 453, Providence, RI: American Mathematical Society, pp. 529–548, doi:10.1090/conm/453/08812, ISBN   9780821842393, MR   2405694 .
  6. 1 2 O. R. Musin (2003). "The problem of the twenty-five spheres". Russ. Math. Surv. 58 (4): 794–795. Bibcode:2003RuMaS..58..794M. doi:10.1070/RM2003v058n04ABEH000651.
  7. Pfender, Florian; Ziegler, Günter M. (September 2004). "Kissing numbers, sphere packings, and some unexpected proofs" (PDF). Notices of the American Mathematical Society: 873–883..
  8. Levenshtein, Vladimir I. (1979). "О границах для упаковок в n-мерном евклидовом пространстве" [On bounds for packings in n-dimensional Euclidean space]. Doklady Akademii Nauk SSSR (in Russian). 245 (6): 1299–1303.
  9. Odlyzko, A. M., Sloane, N. J. A. New bounds on the number of unit spheres that can touch a unit sphere in n dimensions. J. Combin. Theory Ser. A 26 (1979), no. 2, 210—214
  10. Weisstein, Eric W. "Kissing Number". MathWorld .
  11. 1 2 В. А. Зиновьев, Т. Эриксон (1999). Новые нижние оценки на контактное число для небольших размерностей. Пробл. Передачи Информ. (in Russian). 35 (4): 3–11. English translation: V. A. Zinov'ev, T. Ericson (1999). "New Lower Bounds for Contact Numbers in Small Dimensions". Problems of Information Transmission. 35 (4): 287–294. MR   1737742.
  12. Lagarias, Jeffrey C.; Zong, Chuanming (December 2012). "Mysteries in packing regular tetrahedra" (PDF). Notices of the American Mathematical Society: 1540–1549.
  13. Kammer, Frank; Tholey, Torsten (July 2012). "Approximation Algorithms for Intersection Graphs". Algorithmica. 68 (2): 312–336. doi:10.1007/s00453-012-9671-1.
  14. Numbers m and n run from 1 to N. is the sequence of the N positional vectors. As the condition behind the second universal quantifier () does not change if m and n are exchanged, it is sufficient to let this quantor extend just over . For simplification the sphere radiuses are assumed to be 1/2.
  15. Concerning the matrix only the entries having m<n are needed. Or, equivalent, the matrix can be assumed to be antisymmetric. Anyway the matrix has justN(N  1)\2 free scalar variables. In addition, there are ND-dimensional vectors xn, which correspondent to a matrix of N column vectors.

Related Research Articles

Vector field Assignment of a vector to each point in a subset of Euclidean space

In vector calculus and physics, a vector field is an assignment of a vector to each point in a subset of space. A vector field in the plane, can be visualised as a collection of arrows with a given magnitude and direction, each attached to a point in the plane. Vector fields are often used to model, for example, the speed and direction of a moving fluid throughout space, or the strength and direction of some force, such as the magnetic or gravitational force, as it changes from one point to another point.

Plane (geometry) Flat, two-dimensional surface

In mathematics, a plane is a flat, two-dimensional surface that extends infinitely far. A plane is the two-dimensional analogue of a point, a line and three-dimensional space. Planes can arise as subspaces of some higher-dimensional space, as with a room's walls extended infinitely far, or they may enjoy an independent existence in their own right, as in the setting of Euclidean geometry.

Packing problems are a class of optimization problems in mathematics that involve attempting to pack objects together into containers. The goal is to either pack a single container as densely as possible or pack all objects using as few containers as possible. Many of these problems can be related to real life packaging, storage and transportation issues. Each packing problem has a dual covering problem, which asks how many of the same objects are required to completely cover every region of the container, where objects are allowed to overlap.

In mathematics, an integral polytope has an associated Ehrhart polynomial that encodes the relationship between the volume of a polytope and the number of integer points the polytope contains. The theory of Ehrhart polynomials can be seen as a higher-dimensional generalization of Pick's theorem in the Euclidean plane.

In mathematics, the Leech lattice is an even unimodular lattice Λ24 in 24-dimensional Euclidean space, which is one of the best models for the kissing number problem. It was discovered by John Leech (1967). It may also have been discovered by Ernst Witt in 1940.

Sphere packing an arrangement of non-overlapping spheres within a containing space

In geometry, a sphere packing is an arrangement of non-overlapping spheres within a containing space. The spheres considered are usually all of identical size, and the space is usually three-dimensional Euclidean space. However, sphere packing problems can be generalised to consider unequal spheres, spaces of other dimensions or to non-Euclidean spaces such as hyperbolic space.

Discrete geometry branch of geometry that studies combinatorial properties and constructive methods of discrete geometric objects

Discrete geometry and combinatorial geometry are branches of geometry that study combinatorial properties and constructive methods of discrete geometric objects. Most questions in discrete geometry involve finite or discrete sets of basic geometric objects, such as points, lines, planes, circles, spheres, polygons, and so forth. The subject focuses on the combinatorial properties of these objects, such as how they intersect one another, or how they may be arranged to cover a larger object.

Close-packing of equal spheres

In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement. Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occupied by spheres – that can be achieved by a lattice packing is

In coding theory, block codes are a large and important family of error-correcting codes that encode data in blocks. There is a vast number of examples for block codes, many of which have a wide range of practical applications. The abstract definition of block codes is conceptually useful because it allows coding theorists, mathematicians, and computer scientists to study the limitations of all block codes in a unified way. Such limitations often take the form of bounds that relate different parameters of the block code to each other, such as its rate and its ability to detect and correct errors.

In mathematics, the E8 lattice is a special lattice in R8. It can be characterized as the unique positive-definite, even, unimodular lattice of rank 8. The name derives from the fact that it is the root lattice of the E8 root system.

Three-dimensional space geometric three-parameter model of the physical universe

Three-dimensional space is a geometric setting in which three values are required to determine the position of an element. This is the informal meaning of the term dimension.

16-cell honeycomb one of three regular space-filling tessellation in Euclidean 4-space

In four-dimensional Euclidean geometry, the 16-cell honeycomb is one of the three regular space-filling tessellations, represented by Schläfli symbol {3,3,4,3}, and constructed by a 4-dimensional packing of 16-cell facets, three around every face.

The 8-demicubic honeycomb, or demiocteractic honeycomb is a uniform space-filling tessellation in Euclidean 8-space. It is constructed as an alternation of the regular 8-cubic honeycomb.

Two-dimensional space Geometric model of the planar projection of the physical universe

Two-dimensional space is a geometric setting in which two values are required to determine the position of an element. The set 2 of pairs of real numbers with appropriate structure often serves as the canonical example of a two-dimensional Euclidian space. For a generalization of the concept, see dimension.

Polyhedral combinatorics is a branch of mathematics, within combinatorics and discrete geometry, that studies the problems of counting and describing the faces of convex polyhedra and higher-dimensional convex polytopes.

In mathematics, a sequence of n real numbers can be understood as a location in n-dimensional space. When n = 8, the set of all such locations is called 8-dimensional space. Often such spaces are studied as vector spaces, without any notion of distance. Eight-dimensional Euclidean space is eight-dimensional space equipped with the Euclidean metric.

Ideal lattices are a special class of lattices and a generalization of cyclic lattices. Ideal lattices naturally occur in many parts of number theory, but also in other areas. In particular, they have a significant place in cryptography. Micciancio defined a generalization of cyclic lattices as ideal lattices. They can be used in cryptosystems to decrease by a square root the number of parameters necessary to describe a lattice, making them more efficient. Ideal lattices are a new concept, but similar lattice classes have been used for a long time. For example cyclic lattices, a special case of ideal lattices, are used in NTRUEncrypt and NTRUSign.

In the mathematical fields of numerical analysis and approximation theory, box splines are piecewise polynomial functions of several variables. Box splines are considered as a multivariate generalization of basis splines (B-splines) and are generally used for multivariate approximation/interpolation. Geometrically, a box spline is the shadow (X-ray) of a hypercube projected down to a lower-dimensional space. Box splines and simplex splines are well studied special cases of polyhedral splines which are defined as shadows of general polytopes.

Short integer solution (SIS) and ring-SIS problems are two average-case problems that are used in lattice-based cryptography constructions. Lattice-based cryptography began in 1996 from a seminal work by Ajtai who presented a family of one-way functions based on SIS problem. He showed that it is secure in an average case if the shortest vector problem is hard in a worst-case scenario.

References