The project to create the International Space Station required the utilization and/or construction of new and existing manufacturing facilities around the world, mostly in the United States and Europe. The agencies overseeing the manufacturing involved NASA, Roscosmos, the European Space Agency, JAXA, and the Canadian Space Agency. Hundreds of contractors [1] working for the five space agencies were assigned the task of fabricating the modules, trusses, experiments and other hardware elements for the station.
The fact that the project involved the co-operation of sixteen countries working together created engineering challenges that had to be overcome: most notably the differences in language, culture and politics, but also engineering processes, management, measuring standards and communication; to ensure that all elements connect together and function according to plan. The ISS agreement program also called for the station components to be made highly durable and versatile — as it is intended to be used by astronauts indefinitely. A series of new engineering and manufacturing processes and equipment were developed, and shipments of steel, aluminium alloys and other materials were needed for the construction of the space station components.
The project began as Space Station Freedom, a US only effort, but was long delayed by funding and technical problems. Following the initial 1980's authorization (with an intended ten year construction period) by Ronald Reagan, the Station Freedom concept was designed and renamed in the 1990s to reduce costs and expand international involvement. In 1993, the United States and Russia agreed to merge their separate space station plans into a single facility integrating their respective modules and incorporating contributions from the European Space Agency and Japan. [2] In later months, an international agreement board recruited several more space agencies and companies to collaborate to the project. The International Organization for Standardization played a crucial role in unifying and overcoming different engineering methods (such as measurements and units), languages, standards and techniques to ensure quality, engineering communication and logistical management across all manufacturing activities of the station components.[ citation needed ]
Engineering diagrams of various elements of the ISS, with annotations of various parts and systems on each module.
List of factories and manufacturing processes used in the construction and fabrication of the International Space Station modular components:[ citation needed ]
Decommissioned Components are shown in gray.
Once manufactured or fabricated sufficiently, most of the space station elements were transported by aircraft (usually the Airbus Beluga or the Antonov An-124) to the Kennedy Space Center Space Station Processing Facility for final manufacturing stages, checks and launch processing. Some elements arrived by ship at Port Canaveral. [23] [24]
Each module for aircraft transport was safely housed in a custom-designed shipping container with foam insulation and an outer shell of sheet metal, to protect it from damage and the elements. At their respective European, Russian and Japanese factories, the modules were transported to their nearest airport by road in their containers, loaded into the cargo aircraft and were flown to Kennedy Space Center's Shuttle Landing Facility for unloading and final transfers to the SSPF and or the Operations and Checkout Building in the KSC industrial area. The American and Canadian-built components such as the US lab, Node 1, Quest airlock, truss and solar array segments, and the Canadarm-2 were either flown by the Aero Spacelines Super Guppy to KSC, or transported by road and rail. [25]
After final stages of manufacturing, systems testing and launch checkout, all ISS components are loaded into a payload transfer container in the shape of the Space Shuttle payload bay. This container safely carries the component in its launch configuration until it is hoisted vertically at the launch pad gantry for transfer to the Space Shuttle orbiter for launch and in-orbit assembly of the International Space Station. [26]
With the exception of all but one Russian-built module — Rassvet, all ISS components end up here at either one or both of these buildings at Kennedy Space Center.
At the SSPF, ISS modules, trusses and solar arrays are prepped and made ready for launch. In this iconic building are two large 100,000 class clean work environment areas. [27] Workers and engineers wear full non-contaminant clothing while working. Modules receive cleaning and polishing, and some areas are temporarily disassembled for the installation of cables, electrical systems and plumbing. Steel truss parts and module panels are assembled together with screws, bolts and connectors, some with insulation. In another area, shipments of spare materials are available for installation. International Standard Payload Rack frames are assembled and welded together, allowing the installation of instruments, machines and science experiment boxes to be fitted. Once racks are fully assembled, they are hoisted by a special manually operated robotic crane and carefully maneuvered into place inside the space station modules. Each rack weighs from 700 to 1,100 kg, and connect inside the module on special mounts with screws and latches. [28]
Cargo bags for MPLM modules were filled with their cargo such as food packages, science experiments and other miscellaneous items on-site in the SSPF, and were loaded into the module by the same robotic crane and strapped in securely.
Adjacent to the Space Station Processing Facility, the Operations and Checkout Building's spacecraft workshop is used for testing of the space station modules in a vacuum chamber to check for leaks which can be repaired on-site. Additionally, systems checking on various electrical elements and machines is conducted. Similar processing operations to the SSPF are conducted in this building if the SSPF area is full, or certain stages of preparation can only be done in the O&C. [29]
The International Space Station (ISS) is a large space station that was assembled and is maintained in low Earth orbit by a collaboration of five space agencies and their contractors: NASA, Roscosmos (Russia), ESA (Europe), JAXA (Japan), and CSA (Canada). The ISS is the largest space station ever built. Its primary purpose is to perform microgravity and space environment experiments.
Spacelab was a reusable laboratory developed by European Space Agency (ESA) and used on certain spaceflights flown by the Space Shuttle. The laboratory comprised multiple components, including a pressurized module, an unpressurized carrier, and other related hardware housed in the Shuttle's cargo bay. The components were arranged in various configurations to meet the needs of each spaceflight.
Columbus is a science laboratory that is part of the International Space Station (ISS) and is the largest single contribution to the ISS made by the European Space Agency (ESA).
Kibō, also known as the Japanese Experiment Module (JEM), is a Japanese science module for the International Space Station (ISS) developed by JAXA. It is the largest single ISS module, and is attached to the Harmony module. The first two pieces of the module were launched on Space Shuttle missions STS-123 and STS-124. The third and final components were launched on STS-127.
STS-105 was a mission of the Space Shuttle Discovery to the International Space Station, launched from Kennedy Space Center, Florida, 10 August 2001. This mission was Discovery's final mission until STS-114, because Discovery was grounded for a refit, and then all Shuttles were grounded in the wake of the Columbia disaster. The refit included an update of the flight deck to the glass cockpit layout, which was already installed on Atlantis and Columbia.
STS-111 was a space shuttle mission to the International Space Station (ISS) flown by Space Shuttle Endeavour. STS-111 resupplied the station and replaced the Expedition 4 crew with the Expedition 5 crew. It was launched on 5 June 2002, from Kennedy Space Center, Florida.
A Multi-Purpose Logistics Module (MPLM) is a large pressurized container that was used on Space Shuttle missions to transfer cargo to and from the International Space Station (ISS). Two MPLMs made a dozen trips in the Shuttle cargo bay and initially berthed to the Unity and later the Harmony module on the ISS. Once attached, supplies were offloaded, and finished experiments and waste were reloaded. The MPLM was then transferred back into the Shuttle’s cargo bay for return to Earth. Three modules were built by Alenia Aeronautica for the Italian Space Agency (ASI). They were named Leonardo, Raffaello, and Donatello.
Harmony, also known as Node 2, is the "utility hub" of the International Space Station. It connects the laboratory modules of the United States, Europe and Japan, as well as providing electrical power and electronic data. Sleeping cabins for four of the crew are housed here.
Tranquility, also known as Node 3, is a module of the International Space Station (ISS). It contains environmental control systems, life support systems, a toilet, exercise equipment, and an observation cupola.
STS-128 was a NASA Space Shuttle mission to the International Space Station (ISS) that launched on August 28, 2009. Space ShuttleDiscovery carried the Multi-Purpose Logistics Module Leonardo as its primary payload. Leonardo contained a collection of experiments for studying the physics and chemistry of microgravity. Three spacewalks were carried out during the mission, which removed and replaced a materials processing experiment outside ESA's Columbus module, and returned an empty ammonia tank assembly.
STS-131 was a NASA Space Shuttle mission to the International Space Station (ISS). Space ShuttleDiscovery launched on April 5, 2010, at 6:21 am from LC-39A, and landed at 9:08 am on April 20, 2010, on runway 33 at the Kennedy Space Center's Shuttle Landing Facility. The mission marked the longest flight for Space Shuttle Discovery.
The Space Systems Processing Facility (SSPF), originally the Space Station Processing Facility, is a three-story industrial building at Kennedy Space Center for the manufacture and processing of flight hardware, modules, structural components and solar arrays of the International Space Station, and future space stations and commercial spacecraft. It was built in 1992 at the space complex's industrial area, just east of the Operations and Checkout Building.
Rassvet , also known as the Mini-Research Module 1 and formerly known as the Docking Cargo Module, is a component of the International Space Station (ISS). The module's design is similar to the Mir Docking Module launched on STS-74 in 1995. Rassvet is primarily used for cargo storage and as a docking port for visiting spacecraft. It was flown to the ISS aboard Space ShuttleAtlantis on the STS-132 mission on 14 May 2010, and was connected to the ISS on 18 May 2010. The hatch connecting Rassvet with the ISS was first opened on 20 May 2010. On 28 June 2010, the Soyuz TMA-19 spacecraft performed the first docking with the module.
An EXpedite the PRocessing of Experiments to Space Station (ExPRESS) Logistics Carrier (ELC) is an unpressurized attached payload platform for the International Space Station (ISS) that provides mechanical mounting surfaces, electrical power, and command and data handling services for Orbital Replacement Units (ORUs) as well as science experiments on the ISS. The ELCs were developed primarily at the Goddard Space Flight Center in Greenbelt, Maryland, with support from JSC, KSC, and MSFC. ELC was formerly called "Express Pallet" and is the unpressurized counterpart to the pressurized ExPRESS Rack. An ELC provides scientists with a platform and infrastructure to deploy experiments in the vacuum of space without requiring a separate dedicated Earth-orbiting satellite.
The process of assembling the International Space Station (ISS) has been under way since the 1990s. Zarya, the first ISS module, was launched by a Proton rocket on 20 November 1998. The STS-88 Space Shuttle mission followed two weeks after Zarya was launched, bringing Unity, the first of three node modules, and connecting it to Zarya. This bare 2-module core of the ISS remained uncrewed for the next one and a half years, until in July 2000 the Russian module Zvezda was launched by a Proton rocket, allowing a maximum crew of three astronauts or cosmonauts to be on the ISS permanently.
STS-135 was the 135th and final mission of the American Space Shuttle program. It used the orbiter Atlantis and hardware originally processed for the STS-335 contingency mission, which was not flown. STS-135 launched on July 8, 2011, and landed on July 21, 2011, following a one-day mission extension. The four-person crew was the smallest of any shuttle mission since STS-6 in April 1983. The mission's primary cargo was the Multi-Purpose Logistics Module (MPLM) Raffaello and a Lightweight Multi-Purpose Carrier (LMC), which were delivered to the International Space Station (ISS). The flight of Raffaello marked the only time that Atlantis carried an MPLM.
Leonardo, also known as the Permanent Multipurpose Module (PMM) is a module of the International Space Station. It was flown into space aboard the Space Shuttle Discovery on STS-133 on 24 February 2011 and installed on 1 March. Leonardo is primarily used for storage of spares, supplies and waste on the ISS, which was until then stored in many different places within the space station. It is also the personal hygiene area for the astronauts who live in the US Orbital Segment. The Leonardo PMM was a Multi-Purpose Logistics Module (MPLM) before 2011, then was modified into its current configuration. It was formerly one of two MPLM used for bringing cargo to and from the ISS with the Space Shuttle. The module was named for Italian polymath Leonardo da Vinci.
The US Orbital Segment (USOS) is the name given to the components of the International Space Station (ISS) constructed and operated by the United States National Aeronautics and Space Administration (NASA), European Space Agency (ESA), Canadian Space Agency (CSA) and Japan Aerospace Exploration Agency (JAXA). The segment consists of eleven pressurized components and various external elements, almost all of which were delivered by the Space Shuttle.
Node 4, also known as the Docking Hub System (DHS), was a proposed module of the International Space Station (ISS). In 2011 NASA was considering a 40-month design and development effort for Node 4 that would result in its launch in late 2013.
The Nanoracks Bishop Airlock is a commercially funded airlock module launched to the International Space Station on SpaceX CRS-21 on 6 December 2020. It was berthed to the Tranquility module on 19 December 2020 by the Canadarm2. The module was built by Nanoracks, Thales Alenia Space, and Boeing. It is used to deploy CubeSats, small satellites, and other external payloads for NASA, Center for the Advancement of Science in Space (CASIS), and other commercial and governmental customers. NASA plans on using the airlock as a brand new way to dispose large pieces of trash. The name refers to the bishop chess piece, which moves diagonally.