Mohr's circle

Last updated
Figure 1. Mohr's circles for a three-dimensional state of stress Mohr Circle.svg
Figure 1. Mohr's circles for a three-dimensional state of stress

Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.

Contents

Mohr's circle is often used in calculations relating to mechanical engineering for materials' strength, geotechnical engineering for strength of soils, and structural engineering for strength of built structures. It is also used for calculating stresses in many planes by reducing them to vertical and horizontal components. These are called principal planes in which principal stresses are calculated; Mohr's circle can also be used to find the principal planes and the principal stresses in a graphical representation, and is one of the easiest ways to do so. [1]

After performing a stress analysis on a material body assumed as a continuum, the components of the Cauchy stress tensor at a particular material point are known with respect to a coordinate system. The Mohr circle is then used to determine graphically the stress components acting on a rotated coordinate system, i.e., acting on a differently oriented plane passing through that point.

The abscissa and ordinate (,) of each point on the circle are the magnitudes of the normal stress and shear stress components, respectively, acting on the rotated coordinate system. In other words, the circle is the locus of points that represent the state of stress on individual planes at all their orientations, where the axes represent the principal axes of the stress element.

19th-century German engineer Karl Culmann was the first to conceive a graphical representation for stresses while considering longitudinal and vertical stresses in horizontal beams during bending. His work inspired fellow German engineer Christian Otto Mohr (the circle's namesake), who extended it to both two- and three-dimensional stresses and developed a failure criterion based on the stress circle. [2]

Alternative graphical methods for the representation of the stress state at a point include the Lamé's stress ellipsoid and Cauchy's stress quadric.

The Mohr circle can be applied to any symmetric 2x2 tensor matrix, including the strain and moment of inertia tensors.

Motivation

Figure 2. Stress in a loaded deformable material body assumed as a continuum. Stress in a continuum.svg
Figure 2. Stress in a loaded deformable material body assumed as a continuum.

Internal forces are produced between the particles of a deformable object, assumed as a continuum, as a reaction to applied external forces, i.e., either surface forces or body forces. This reaction follows from Euler's laws of motion for a continuum, which are equivalent to Newton's laws of motion for a particle. A measure of the intensity of these internal forces is called stress. Because the object is assumed as a continuum, these internal forces are distributed continuously within the volume of the object.

In engineering, e.g., structural, mechanical, or geotechnical, the stress distribution within an object, for instance stresses in a rock mass around a tunnel, airplane wings, or building columns, is determined through a stress analysis. Calculating the stress distribution implies the determination of stresses at every point (material particle) in the object. According to Cauchy, the stress at any point in an object (Figure 2), assumed as a continuum, is completely defined by the nine stress components of a second order tensor of type (2,0) known as the Cauchy stress tensor, :

Figure 3. Stress transformation at a point in a continuum under plane stress conditions. Stress transformation 2D.svg
Figure 3. Stress transformation at a point in a continuum under plane stress conditions.

After the stress distribution within the object has been determined with respect to a coordinate system , it may be necessary to calculate the components of the stress tensor at a particular material point with respect to a rotated coordinate system , i.e., the stresses acting on a plane with a different orientation passing through that point of interest —forming an angle with the coordinate system (Figure 3). For example, it is of interest to find the maximum normal stress and maximum shear stress, as well as the orientation of the planes where they act upon. To achieve this, it is necessary to perform a tensor transformation under a rotation of the coordinate system. From the definition of tensor, the Cauchy stress tensor obeys the tensor transformation law. A graphical representation of this transformation law for the Cauchy stress tensor is the Mohr circle for stress.

Mohr's circle for two-dimensional state of stress

Figure 4. Stress components at a plane passing through a point in a continuum under plane stress conditions. Stress at a plane 2D.svg
Figure 4. Stress components at a plane passing through a point in a continuum under plane stress conditions.

In two dimensions, the stress tensor at a given material point with respect to any two perpendicular directions is completely defined by only three stress components. For the particular coordinate system these stress components are: the normal stresses and , and the shear stress . From the balance of angular momentum, the symmetry of the Cauchy stress tensor can be demonstrated. This symmetry implies that . Thus, the Cauchy stress tensor can be written as:

The objective is to use the Mohr circle to find the stress components and on a rotated coordinate system , i.e., on a differently oriented plane passing through and perpendicular to the - plane (Figure 4). The rotated coordinate system makes an angle with the original coordinate system .

Equation of the Mohr circle

To derive the equation of the Mohr circle for the two-dimensional cases of plane stress and plane strain, first consider a two-dimensional infinitesimal material element around a material point (Figure 4), with a unit area in the direction parallel to the - plane, i.e., perpendicular to the page or screen.

From equilibrium of forces on the infinitesimal element, the magnitudes of the normal stress and the shear stress are given by:

Both equations can also be obtained by applying the tensor transformation law on the known Cauchy stress tensor, which is equivalent to performing the static equilibrium of forces in the direction of and .

These two equations are the parametric equations of the Mohr circle. In these equations, is the parameter, and and are the coordinates. This means that by choosing a coordinate system with abscissa and ordinate , giving values to the parameter will place the points obtained lying on a circle.

Eliminating the parameter from these parametric equations will yield the non-parametric equation of the Mohr circle. This can be achieved by rearranging the equations for and , first transposing the first term in the first equation and squaring both sides of each of the equations then adding them. Thus we have

where

This is the equation of a circle (the Mohr circle) of the form

with radius centered at a point with coordinates in the coordinate system.

Sign conventions

There are two separate sets of sign conventions that need to be considered when using the Mohr Circle: One sign convention for stress components in the "physical space", and another for stress components in the "Mohr-Circle-space". In addition, within each of the two set of sign conventions, the engineering mechanics (structural engineering and mechanical engineering) literature follows a different sign convention from the geomechanics literature. There is no standard sign convention, and the choice of a particular sign convention is influenced by convenience for calculation and interpretation for the particular problem in hand. A more detailed explanation of these sign conventions is presented below.

The previous derivation for the equation of the Mohr Circle using Figure 4 follows the engineering mechanics sign convention. The engineering mechanics sign convention will be used for this article.

Physical-space sign convention

From the convention of the Cauchy stress tensor (Figure 3 and Figure 4), the first subscript in the stress components denotes the face on which the stress component acts, and the second subscript indicates the direction of the stress component. Thus is the shear stress acting on the face with normal vector in the positive direction of the -axis, and in the positive direction of the -axis.

In the physical-space sign convention, positive normal stresses are outward to the plane of action (tension), and negative normal stresses are inward to the plane of action (compression) (Figure 5).

In the physical-space sign convention, positive shear stresses act on positive faces of the material element in the positive direction of an axis. Also, positive shear stresses act on negative faces of the material element in the negative direction of an axis. A positive face has its normal vector in the positive direction of an axis, and a negative face has its normal vector in the negative direction of an axis. For example, the shear stresses and are positive because they act on positive faces, and they act as well in the positive direction of the -axis and the -axis, respectively (Figure 3). Similarly, the respective opposite shear stresses and acting in the negative faces have a negative sign because they act in the negative direction of the -axis and -axis, respectively.

Mohr-circle-space sign convention

Figure 5. Engineering mechanics sign convention for drawing the Mohr circle. This article follows sign-convention # 3, as shown. Mohr circle sign convetion.svg
Figure 5. Engineering mechanics sign convention for drawing the Mohr circle. This article follows sign-convention # 3, as shown.

In the Mohr-circle-space sign convention, normal stresses have the same sign as normal stresses in the physical-space sign convention: positive normal stresses act outward to the plane of action, and negative normal stresses act inward to the plane of action.

Shear stresses, however, have a different convention in the Mohr-circle space compared to the convention in the physical space. In the Mohr-circle-space sign convention, positive shear stresses rotate the material element in the counterclockwise direction, and negative shear stresses rotate the material in the clockwise direction. This way, the shear stress component is positive in the Mohr-circle space, and the shear stress component is negative in the Mohr-circle space.

Two options exist for drawing the Mohr-circle space, which produce a mathematically correct Mohr circle:

  1. Positive shear stresses are plotted upward (Figure 5, sign convention #1)
  2. Positive shear stresses are plotted downward, i.e., the -axis is inverted (Figure 5, sign convention #2).

Plotting positive shear stresses upward makes the angle on the Mohr circle have a positive rotation clockwise, which is opposite to the physical space convention. That is why some authors [3] prefer plotting positive shear stresses downward, which makes the angle on the Mohr circle have a positive rotation counterclockwise, similar to the physical space convention for shear stresses.

To overcome the "issue" of having the shear stress axis downward in the Mohr-circle space, there is an alternative sign convention where positive shear stresses are assumed to rotate the material element in the clockwise direction and negative shear stresses are assumed to rotate the material element in the counterclockwise direction (Figure 5, option 3). This way, positive shear stresses are plotted upward in the Mohr-circle space and the angle has a positive rotation counterclockwise in the Mohr-circle space. This alternative sign convention produces a circle that is identical to the sign convention #2 in Figure 5 because a positive shear stress is also a counterclockwise shear stress, and both are plotted downward. Also, a negative shear stress is a clockwise shear stress, and both are plotted upward.

This article follows the engineering mechanics sign convention for the physical space and the alternative sign convention for the Mohr-circle space (sign convention #3 in Figure 5)

Drawing Mohr's circle

Figure 6. Mohr's circle for plane stress and plane strain conditions (double angle approach). After a stress analysis, the stress components
s
x
{\displaystyle \sigma _{x}}
,
s
y
{\displaystyle \sigma _{y}}
, and
t
x
y
{\displaystyle \tau _{xy}}
at a material point
P
{\displaystyle P}
are known. These stress components act on two perpendicular planes
A
{\displaystyle A}
and
B
{\displaystyle B}
passing through
P
{\displaystyle P}
. The coordinates of point
A
{\displaystyle A}
and
B
{\displaystyle B}
on the Mohr circle are the stress components acting on the planes
A
{\displaystyle A}
and
B
{\displaystyle B}
of the material element, respectively. The Mohr circle is then used to find the stress components
s
n
{\displaystyle \sigma _{\mathrm {n} }}
and
t
n
{\displaystyle \tau _{\mathrm {n} }}
, i.e., coordinates of any stress point
D
{\displaystyle D}
on the circle, acting on any other plane
D
{\displaystyle D}
passing through
P
{\displaystyle P}
. The angle between the lines
O
B
-
{\displaystyle {\overline {OB}}}
and
O
D
-
{\displaystyle {\overline {OD}}}
is double the angle
th
{\displaystyle \theta }
between the normal vectors of planes
B
{\displaystyle B}
and
D
{\displaystyle D}
passing through
P
{\displaystyle P}
. Mohr Circle plane stress (angle).svg
Figure 6. Mohr's circle for plane stress and plane strain conditions (double angle approach). After a stress analysis, the stress components , , and at a material point are known. These stress components act on two perpendicular planes and passing through . The coordinates of point and on the Mohr circle are the stress components acting on the planes and of the material element, respectively. The Mohr circle is then used to find the stress components and , i.e., coordinates of any stress point on the circle, acting on any other plane passing through . The angle between the lines and is double the angle between the normal vectors of planes and passing through .

Assuming we know the stress components , , and at a point in the object under study, as shown in Figure 4, the following are the steps to construct the Mohr circle for the state of stresses at :

  1. Draw the Cartesian coordinate system with a horizontal -axis and a vertical -axis.
  2. Plot two points and in the space corresponding to the known stress components on both perpendicular planes and , respectively (Figure 4 and 6), following the chosen sign convention.
  3. Draw the diameter of the circle by joining points and with a straight line .
  4. Draw the Mohr Circle. The centre of the circle is the midpoint of the diameter line , which corresponds to the intersection of this line with the axis.

Finding principal normal stresses

Stress components on a 2D rotating element. Click to see animation. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied. Principal stresses occur when the shear stresses simultaneously disappear from all faces. The orientation at which this occurs gives the principal directions. In this example, when the rectangle is horizontal, the stresses are given by
[
s
x
x
t
x
y
t
y
x
s
y
y
]
=
[
-
10
10
10
15
]
.
{\displaystyle \left[{\begin{matrix}\sigma _{xx}&\tau _{xy}\\\tau _{yx}&\sigma _{yy}\end{matrix}}\right]=\left[{\begin{matrix}-10&10\\10&15\end{matrix}}\right].}
The corresponding Mohr's circle representation is shown at the bottom. Stressrect mohr.gif
Stress components on a 2D rotating element. Click to see animation. Example of how stress components vary on the faces (edges) of a rectangular element as the angle of its orientation is varied. Principal stresses occur when the shear stresses simultaneously disappear from all faces. The orientation at which this occurs gives the principal directions. In this example, when the rectangle is horizontal, the stresses are given by The corresponding Mohr's circle representation is shown at the bottom.

The magnitude of the principal stresses are the abscissas of the points and (Figure 6) where the circle intersects the -axis. The magnitude of the major principal stress is always the greatest absolute value of the abscissa of any of these two points. Likewise, the magnitude of the minor principal stress is always the lowest absolute value of the abscissa of these two points. As expected, the ordinates of these two points are zero, corresponding to the magnitude of the shear stress components on the principal planes. Alternatively, the values of the principal stresses can be found by

where the magnitude of the average normal stress is the abscissa of the centre , given by

and the length of the radius of the circle (based on the equation of a circle passing through two points), is given by

Finding maximum and minimum shear stresses

The maximum and minimum shear stresses correspond to the ordinates of the highest and lowest points on the circle, respectively. These points are located at the intersection of the circle with the vertical line passing through the center of the circle, . Thus, the magnitude of the maximum and minimum shear stresses are equal to the value of the circle's radius

Finding stress components on an arbitrary plane

As mentioned before, after the two-dimensional stress analysis has been performed we know the stress components , , and at a material point . These stress components act in two perpendicular planes and passing through as shown in Figure 5 and 6. The Mohr circle is used to find the stress components and , i.e., coordinates of any point on the circle, acting on any other plane passing through making an angle with the plane . For this, two approaches can be used: the double angle, and the Pole or origin of planes.

Double angle

As shown in Figure 6, to determine the stress components acting on a plane at an angle counterclockwise to the plane on which acts, we travel an angle in the same counterclockwise direction around the circle from the known stress point to point , i.e., an angle between lines and in the Mohr circle.

The double angle approach relies on the fact that the angle between the normal vectors to any two physical planes passing through (Figure 4) is half the angle between two lines joining their corresponding stress points on the Mohr circle and the centre of the circle.

This double angle relation comes from the fact that the parametric equations for the Mohr circle are a function of . It can also be seen that the planes and in the material element around of Figure 5 are separated by an angle , which in the Mohr circle is represented by a angle (double the angle).

Pole or origin of planes

Figure 7. Mohr's circle for plane stress and plane strain conditions (Pole approach). Any straight line drawn from the pole will intersect the Mohr circle at a point that represents the state of stress on a plane inclined at the same orientation (parallel) in space as that line. Mohr Circle plane stress (pole).svg
Figure 7. Mohr's circle for plane stress and plane strain conditions (Pole approach). Any straight line drawn from the pole will intersect the Mohr circle at a point that represents the state of stress on a plane inclined at the same orientation (parallel) in space as that line.

The second approach involves the determination of a point on the Mohr circle called the pole or the origin of planes. Any straight line drawn from the pole will intersect the Mohr circle at a point that represents the state of stress on a plane inclined at the same orientation (parallel) in space as that line. Therefore, knowing the stress components and on any particular plane, one can draw a line parallel to that plane through the particular coordinates and on the Mohr circle and find the pole as the intersection of such line with the Mohr circle. As an example, let's assume we have a state of stress with stress components , , and , as shown on Figure 7. First, we can draw a line from point parallel to the plane of action of , or, if we choose otherwise, a line from point parallel to the plane of action of . The intersection of any of these two lines with the Mohr circle is the pole. Once the pole has been determined, to find the state of stress on a plane making an angle with the vertical, or in other words a plane having its normal vector forming an angle with the horizontal plane, then we can draw a line from the pole parallel to that plane (See Figure 7). The normal and shear stresses on that plane are then the coordinates of the point of intersection between the line and the Mohr circle.

Finding the orientation of the principal planes

The orientation of the planes where the maximum and minimum principal stresses act, also known as principal planes, can be determined by measuring in the Mohr circle the angles ∠BOC and ∠BOE, respectively, and taking half of each of those angles. Thus, the angle ∠BOC between and is double the angle which the major principal plane makes with plane .

Angles and can also be found from the following equation

This equation defines two values for which are apart (Figure). This equation can be derived directly from the geometry of the circle, or by making the parametric equation of the circle for equal to zero (the shear stress in the principal planes is always zero).

Example

Figure 8 Mohr Circle example (angle).svg
Figure 8
Figure 9 Mohr Circle example (pole).svg
Figure 9

Assume a material element under a state of stress as shown in Figure 8 and Figure 9, with the plane of one of its sides oriented 10° with respect to the horizontal plane. Using the Mohr circle, find:

Check the answers using the stress transformation formulas or the stress transformation law.

Solution: Following the engineering mechanics sign convention for the physical space (Figure 5), the stress components for the material element in this example are:

.

Following the steps for drawing the Mohr circle for this particular state of stress, we first draw a Cartesian coordinate system with the -axis upward.

We then plot two points A(50,40) and B(-10,-40), representing the state of stress at plane A and B as show in both Figure 8 and Figure 9. These points follow the engineering mechanics sign convention for the Mohr-circle space (Figure 5), which assumes positive normals stresses outward from the material element, and positive shear stresses on each plane rotating the material element clockwise. This way, the shear stress acting on plane B is negative and the shear stress acting on plane A is positive. The diameter of the circle is the line joining point A and B. The centre of the circle is the intersection of this line with the -axis. Knowing both the location of the centre and length of the diameter, we are able to plot the Mohr circle for this particular state of stress.

The abscissas of both points E and C (Figure 8 and Figure 9) intersecting the -axis are the magnitudes of the minimum and maximum normal stresses, respectively; the ordinates of both points E and C are the magnitudes of the shear stresses acting on both the minor and major principal planes, respectively, which is zero for principal planes.

Even though the idea for using the Mohr circle is to graphically find different stress components by actually measuring the coordinates for different points on the circle, it is more convenient to confirm the results analytically. Thus, the radius and the abscissa of the centre of the circle are

and the principal stresses are

The coordinates for both points H and G (Figure 8 and Figure 9) are the magnitudes of the minimum and maximum shear stresses, respectively; the abscissas for both points H and G are the magnitudes for the normal stresses acting on the same planes where the minimum and maximum shear stresses act, respectively. The magnitudes of the minimum and maximum shear stresses can be found analytically by

and the normal stresses acting on the same planes where the minimum and maximum shear stresses act are equal to

We can choose to either use the double angle approach (Figure 8) or the Pole approach (Figure 9) to find the orientation of the principal normal stresses and principal shear stresses.

Using the double angle approach we measure the angles ∠BOC and ∠BOE in the Mohr Circle (Figure 8) to find double the angle the major principal stress and the minor principal stress make with plane B in the physical space. To obtain a more accurate value for these angles, instead of manually measuring the angles, we can use the analytical expression

One solution is: . From inspection of Figure 8, this value corresponds to the angle ∠BOE. Thus, the minor principal angle is

Then, the major principal angle is

Remember that in this particular example and are angles with respect to the plane of action of (oriented in the -axis)and not angles with respect to the plane of action of (oriented in the -axis).

Using the Pole approach, we first localize the Pole or origin of planes. For this, we draw through point A on the Mohr circle a line inclined 10° with the horizontal, or, in other words, a line parallel to plane A where acts. The Pole is where this line intersects the Mohr circle (Figure 9). To confirm the location of the Pole, we could draw a line through point B on the Mohr circle parallel to the plane B where acts. This line would also intersect the Mohr circle at the Pole (Figure 9).

From the Pole, we draw lines to different points on the Mohr circle. The coordinates of the points where these lines intersect the Mohr circle indicate the stress components acting on a plane in the physical space having the same inclination as the line. For instance, the line from the Pole to point C in the circle has the same inclination as the plane in the physical space where acts. This plane makes an angle of 63.435° with plane B, both in the Mohr-circle space and in the physical space. In the same way, lines are traced from the Pole to points E, D, F, G and H to find the stress components on planes with the same orientation.

Mohr's circle for a general three-dimensional state of stresses

Figure 10. Mohr's circle for a three-dimensional state of stress Mohr Circle.svg
Figure 10. Mohr's circle for a three-dimensional state of stress

To construct the Mohr circle for a general three-dimensional case of stresses at a point, the values of the principal stresses and their principal directions must be first evaluated.

Considering the principal axes as the coordinate system, instead of the general , , coordinate system, and assuming that , then the normal and shear components of the stress vector , for a given plane with unit vector , satisfy the following equations

Knowing that , we can solve for , , , using the Gauss elimination method which yields

Since , and is non-negative, the numerators from these equations satisfy

as the denominator and
as the denominator and
as the denominator and

These expressions can be rewritten as

which are the equations of the three Mohr's circles for stress , , and , with radii , , and , and their centres with coordinates , , , respectively.

These equations for the Mohr circles show that all admissible stress points lie on these circles or within the shaded area enclosed by them (see Figure 10). Stress points satisfying the equation for circle lie on, or outside circle . Stress points satisfying the equation for circle lie on, or inside circle . And finally, stress points satisfying the equation for circle lie on, or outside circle .

See also

Related Research Articles

<span class="mw-page-title-main">Navier–Stokes equations</span> Equations describing the motion of viscous fluid substances

In physics, the Navier–Stokes equations are partial differential equations which describe the motion of viscous fluid substances, named after French engineer and physicist Claude-Louis Navier and Anglo-Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades of progressively building the theories, from 1822 (Navier) to 1842–1850 (Stokes).

In continuum mechanics, the infinitesimal strain theory is a mathematical approach to the description of the deformation of a solid body in which the displacements of the material particles are assumed to be much smaller than any relevant dimension of the body; so that its geometry and the constitutive properties of the material at each point of space can be assumed to be unchanged by the deformation.

<span class="mw-page-title-main">Stress (mechanics)</span> Physical quantity that expresses internal forces in a continuous material

In continuum mechanics, stress is a physical quantity, one of the standard mechanical quantities. It is a quantity that describes the magnitude of forces that cause deformation. Stress is defined as force per unit area. When an object is pulled apart by a force it will cause elongation which is also known as deformation, like the stretching of an elastic band, it is called tensile stress. But, when the forces result in the compression of an object, it is called compressive stress. It results when forces like tension or compression act on a body. The greater this force and the smaller the cross-sectional area of the body on which it acts, the greater the stress. Therefore, stress is measured in newton per square meter (N/m2) or pascal (Pa).

Linear elasticity is a mathematical model of how solid objects deform and become internally stressed due to prescribed loading conditions. It is a simplification of the more general nonlinear theory of elasticity and a branch of continuum mechanics.

Mohr–Coulomb theory is a mathematical model describing the response of brittle materials such as concrete, or rubble piles, to shear stress as well as normal stress. Most of the classical engineering materials follow this rule in at least a portion of their shear failure envelope. Generally the theory applies to materials for which the compressive strength far exceeds the tensile strength.

<span class="mw-page-title-main">Bipolar coordinates</span> 2-dimensional orthogonal coordinate system based on Apollonian circles

Bipolar coordinates are a two-dimensional orthogonal coordinate system based on the Apollonian circles. Confusingly, the same term is also sometimes used for two-center bipolar coordinates. There is also a third system, based on two poles.

A cyclostationary process is a signal having statistical properties that vary cyclically with time. A cyclostationary process can be viewed as multiple interleaved stationary processes. For example, the maximum daily temperature in New York City can be modeled as a cyclostationary process: the maximum temperature on July 21 is statistically different from the temperature on December 20; however, it is a reasonable approximation that the temperature on December 20 of different years has identical statistics. Thus, we can view the random process composed of daily maximum temperatures as 365 interleaved stationary processes, each of which takes on a new value once per year.

<span class="mw-page-title-main">Cauchy stress tensor</span> Representation of mechanical stress at every point within a deformed 3D object

In continuum mechanics, the Cauchy stress tensor, true stress tensor, or simply called the stress tensor is a second order tensor named after Augustin-Louis Cauchy. The tensor consists of nine components that completely define the state of stress at a point inside a material in the deformed state, placement, or configuration. The tensor relates a unit-length direction vector e to the traction vector T(e) across an imaginary surface perpendicular to e:

<span class="mw-page-title-main">Toroidal coordinates</span>

Toroidal coordinates are a three-dimensional orthogonal coordinate system that results from rotating the two-dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci and in bipolar coordinates become a ring of radius in the plane of the toroidal coordinate system; the -axis is the axis of rotation. The focal ring is also known as the reference circle.

<span class="mw-page-title-main">Plane stress</span> When the stress vector within a material is zero across a particular plane

In continuum mechanics, a material is said to be under plane stress if the stress vector is zero across a particular plane. When that situation occurs over an entire element of a structure, as is often the case for thin plates, the stress analysis is considerably simplified, as the stress state can be represented by a tensor of dimension 2. A related notion, plane strain, is often applicable to very thick members.

<span class="mw-page-title-main">Yield surface</span>

A yield surface is a five-dimensional surface in the six-dimensional space of stresses. The yield surface is usually convex and the state of stress of inside the yield surface is elastic. When the stress state lies on the surface the material is said to have reached its yield point and the material is said to have become plastic. Further deformation of the material causes the stress state to remain on the yield surface, even though the shape and size of the surface may change as the plastic deformation evolves. This is because stress states that lie outside the yield surface are non-permissible in rate-independent plasticity, though not in some models of viscoplasticity.

<span class="mw-page-title-main">Neutral axis</span>

The neutral axis is an axis in the cross section of a beam or shaft along which there are no longitudinal stresses or strains. If the section is symmetric, isotropic and is not curved before a bend occurs, then the neutral axis is at the geometric centroid. All fibers on one side of the neutral axis are in a state of tension, while those on the opposite side are in compression.

The Cauchy momentum equation is a vector partial differential equation put forth by Cauchy that describes the non-relativistic momentum transport in any continuum.

<span class="mw-page-title-main">Viscoplasticity</span> Theory in continuum mechanics

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behavior of solids. Rate-dependence in this context means that the deformation of the material depends on the rate at which loads are applied. The inelastic behavior that is the subject of viscoplasticity is plastic deformation which means that the material undergoes unrecoverable deformations when a load level is reached. Rate-dependent plasticity is important for transient plasticity calculations. The main difference between rate-independent plastic and viscoplastic material models is that the latter exhibit not only permanent deformations after the application of loads but continue to undergo a creep flow as a function of time under the influence of the applied load.

<span class="mw-page-title-main">Gravitational lensing formalism</span>

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

<span class="mw-page-title-main">Sandwich theory</span>

Sandwich theory describes the behaviour of a beam, plate, or shell which consists of three layers—two facesheets and one core. The most commonly used sandwich theory is linear and is an extension of first order beam theory. Linear sandwich theory is of importance for the design and analysis of sandwich panels, which are of use in building construction, vehicle construction, airplane construction and refrigeration engineering.

The Hoek–Brown failure criterion is an empirical stress surface that is used in rock mechanics to predict the failure of rock. The original version of the Hoek–Brown criterion was developed by Evert Hoek and E. T. Brown in 1980 for the design of underground excavations. In 1988, the criterion was extended for applicability to slope stability and surface excavation problems. An update of the criterion was presented in 2002 that included improvements in the correlation between the model parameters and the geological strength index (GSI).

<span class="mw-page-title-main">Green's law</span> Equation describing evolution of waves in shallow water

In fluid dynamics, Green's law, named for 19th-century British mathematician George Green, is a conservation law describing the evolution of non-breaking, surface gravity waves propagating in shallow water of gradually varying depth and width. In its simplest form, for wavefronts and depth contours parallel to each other, it states:

The fracture of soft materials involves large deformations and crack blunting before propagation of the crack can occur. Consequently, the stress field close to the crack tip is significantly different from the traditional formulation encountered in the Linear elastic fracture mechanics. Therefore, fracture analysis for these applications requires a special attention. The Linear Elastic Fracture Mechanics (LEFM) and K-field are based on the assumption of infinitesimal deformation, and as a result are not suitable to describe the fracture of soft materials. However, LEFM general approach can be applied to understand the basics of fracture on soft materials. The solution for the deformation and crack stress field in soft materials considers large deformation and is derived from the finite strain elastostatics framework and hyperelastic material models.

<span class="mw-page-title-main">Stress triaxiality</span>

History

References

  1. "Principal stress and principal plane". www.engineeringapps.net. Retrieved 2019-12-25.
  2. Parry, Richard Hawley Grey (2004). Mohr circles, stress paths and geotechnics (2 ed.). Taylor & Francis. pp. 1–30. ISBN   0-415-27297-1.
  3. Gere, James M. (2013). Mechanics of Materials. Goodno, Barry J. (8th ed.). Stamford, CT: Cengage Learning. ISBN   9781111577735.

Bibliography