NASA Centurion

Last updated
Centurion
Centurion-EC98-44822-5.jpg
Centurion takes off from Dryden in December, 1998
RoleRemote controlled UAV
Manufacturer AeroVironment
First flightNovember 10, 1998
Primary user NASA ERAST Program
Number built1
Developed from NASA Pathfinder
Developed into NASA Helios

The NASA Centurion was the third aircraft developed as part of an evolutionary series of solar- and fuel-cell-system-powered unmanned aerial vehicles. AeroVironment, Inc. developed the vehicles under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. They were built to develop the technologies that would allow long-term, high-altitude aircraft to serve as atmospheric satellites, to perform atmospheric research tasks as well as serve as communications platforms. [1] It was developed from the NASA Pathfinder Plus aircraft and was developed into the NASA Helios.

Contents

Centurion

Quarter scale model of Centurion Centurionquarter-EC97-43931-26.jpg
Quarter scale model of Centurion

Centurion, originally built for the 100,000 feet (30,000 m) altitude on solar power milestone specified by the ERAST project, was the third generation aircraft in the NASA Pathfinder series of electrical-powered flying wing unmanned aircraft. The ERAST program managers had determined that an aircraft based on the Pathfinder/Pathfinder Plus concept would be the lowest risk approach of achieving the altitude goal. [2]

Initially, a quarter-scale model of the Centurion was test flown at El Mirage Dry Lake on March 4, 1997. The full-size Centurion's maiden flight took place at Rogers Dry Lake on November 10, 1998, and lasted a total of 1 hr and 24 minutes. At the time, it weighed in at 1,385 pounds (628.2 kg) (including a 150 pounds (68.0 kg) steel anvil hanging on its centerline to simulate a payload) for its first flight. The flight was nearly flawless and was followed by a second similar performance on November 19, this time before a crowd of VIPs and Media. It lasted 1 hr and 29 minutes. The third and final flight of the low altitude test series took place on December 3. On this flight the vehicle was loaded down to its maximum gross weight of 1,806 pounds (819.2 kg) to test its weight carrying capability. Total flight time on this flight was 30 minutes, as it was shortened because high winds were anticipated by mid-morning. All of these flights took place on battery power and verified the design's handling qualities, performance, and structural integrity. Following these three flights, NASA decided to expand the aircraft into the Helios Prototype, with work starting in January, 1999. [1] [2]

Aircraft description

The design of Centurion resulted in an aircraft that looked very much like the Pathfinder, but with a much longer wingspan of 206 feet (63 m). Although the Centurion shape resembled the Pathfinder, the structure was designed to be stronger and capable of carrying numerous payloads (up to 600 pounds (272.2 kg)) more efficiently. Its wing incorporated a redesigned high-altitude airfoil and the span was increased to 206 feet (63 m). The number of motors was increased to 14 and the number of underwing pods to carry batteries, flight control system components, ballast, and landing gear rose to four. [2]

Specifications

Solar Aircraft Evolution through the ERAST Program Solar Aircraft Evolution through the ERAST Program.png
Solar Aircraft Evolution through the ERAST Program
Specifications [1] [3] [4] [5]
 PathfinderPathfinder-PlusCenturionHelios HP01Helios HP03
Length ft(m)12 (3.6)12 (3.6)12 (3.6)12 (3.6)16.5 (5.0)
Chord ft(m)8 (2.4)
Wingspan ft(m)98.4 (29.5)121 (36.3)206 (61.8)247 (75.3)
Aspect ratio12 to 115 to 126 to 130.9 to 1
Glide ratio18 to 121 to 1 ? ? ?
Airspeed kts(km/h)15–18 (27–33)16.5–23.5 (30.6–43.5) ?
Max altitude ft(m)71,530 (21,802)80,201 (24,445)n/a96,863 (29,523)65,000 (19,812)
Empty Wt lb(kg) ? ? ?1,322 (600) ?
Max. weight lb(kg)560 (252)700 (315)±1,900 (±862)2,048 (929)2,320 (1,052)
Payload lb(kg)100 (45)150 (67,5)100–600 (45–270)726 (329) ?
Engineselectric, 2 hp (1.5 kW) each
No. of engines68141410
Solar pwr output (kW)7.512.531 ?18.5
Supplemental powerbatteriesbatteriesbatteriesLi batteriesLi batteries, fuel cell

See also

Related Research Articles

MacCready <i>Gossamer Condor</i> American human-powered aircraft

The MacCready Gossamer Condor was the first human-powered aircraft capable of controlled and sustained flight; as such, it won the Kremer prize in 1977. Its design was led by Paul MacCready of AeroVironment, Inc.

<span class="mw-page-title-main">NASA Pathfinder</span> Unmanned solar powered aircraft

The NASA Pathfinder and NASA Pathfinder Plus were the first two aircraft developed as part of an evolutionary series of solar- and fuel-cell-system-powered unmanned aerial vehicles. AeroVironment, Inc. developed the vehicles under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. They were built to develop the technologies that would allow long-term, high-altitude aircraft to serve as atmospheric satellites, to perform atmospheric research tasks as well as serve as communications platforms. They were developed further into the NASA Centurion and NASA Helios aircraft.

<span class="mw-page-title-main">AeroVironment</span> American unmanned aerial vehicle manufacturer

AeroVironment, Inc. is an American defense contractor headquartered in Arlington, Virginia, that designs and manufactures unmanned aerial vehicles (UAVs). Paul B. MacCready Jr., a designer of human-powered aircraft, founded the company in 1971. The company is best known for its lightweight human-powered and solar-powered vehicles. The company is the US military's top supplier of small drones —notably the Raven, Switchblade, Wasp and Puma models.

<span class="mw-page-title-main">History of unmanned aerial vehicles</span>

UAVs include both autonomous drones and remotely piloted vehicles (RPVs). A UAV is capable of controlled, sustained level flight and is powered by a jet, reciprocating, or electric engine. In the twenty first century technology reached a point of sophistication that the UAV is now being given a greatly expanded role in many areas of aviation.

<span class="mw-page-title-main">Miniature UAV</span> Unmanned aerial vehicle small enough to be man-portable

A miniature UAV, small UAV (SUAV), or drone is an unmanned aerial vehicle small enough to be man-portable. Smallest UAVs are called micro air vehicle.

<span class="mw-page-title-main">Electric aircraft</span> Aircraft powered directly by electricity, with no other engine needed

An electric aircraft is an aircraft powered by electricity. Electric aircraft are seen as a way to reduce the environmental effects of aviation, providing zero emissions and quieter flights. Electricity may be supplied by a variety of methods, the most common being batteries. Most have electric motors driving propellers or turbines.

<span class="mw-page-title-main">NASA ERAST Program</span> NASA long endurance UAV development program

The Environmental Research Aircraft and Sensor Technology, or ERAST program was a NASA program to develop cost-effective, slow-flying unmanned aerial vehicles (UAVs) that can perform long-duration science missions at altitudes above 60,000 ft (18,000 m). The project included a number of technology development programs conducted by the joint NASA-industry ERAST Alliance. The project was formally terminated in 2003.

<span class="mw-page-title-main">General Atomics Altus</span> Type of aircraft

The General Atomics Altus is an unmanned aerial vehicle, designed for scientific research, built by General Atomics Aeronautical Systems (GA-ASI).

<span class="mw-page-title-main">Airbus Zephyr</span> Series of lightweight solar-powered UAV

The Zephyr is a series of high-altitude platform station aircraft produced by Airbus. They were designed originally by QinetiQ, a commercial offshoot of the UK Ministry of Defence. In July 2010, the Zephyr 7 flew during 14 days. In March 2013, the project was sold to Airbus Defence and Space. In the summer of 2022, the Zephyr 8/S flew during 64 days.

<span class="mw-page-title-main">DRDO Rustom</span> Type of aircraft

The DRDO Rustom is a medium-altitude long-endurance unmanned air vehicle (UAV) being developed by Defence Research and Development Organisation for the three services, Indian Army, Indian Navy and the Indian Air Force of the Indian Armed Forces. Rustom is derived from the NAL's LCRA developed by a team under the leadership of late Prof Rustom Damania in the 1980s. The UAV will have structural changes and a new engine.

<span class="mw-page-title-main">NASA Mini-Sniffer</span> NASA high-altitude research UAV

The NASA Mini-Sniffers were a series of unmanned aerial vehicles designed to sample the air at high altitude to support various scientific studies.

<span class="mw-page-title-main">High-altitude platform station</span> Aircraft that provides common satellite services

A high-altitude platform station or atmospheric satellite is a long endurance, high altitude aircraft able to offer observation or communication services similarly to artificial satellites. Mostly unmanned aerial vehicles (UAVs), they remain aloft through atmospheric lift, either aerodynamic like airplanes, or aerostatic like airships or balloons. High-altitude long endurance (HALE) military drones can fly above 60,000 ft over 32 hours, while civil HAPS are radio stations at an altitude of 20 to 50 km above waypoints, for weeks.

<span class="mw-page-title-main">AeroVironment Helios Prototype</span> Type of aircraft

The Helios Prototype was the fourth and final aircraft developed as part of an evolutionary series of solar- and fuel-cell-system-powered unmanned aerial vehicles. AeroVironment, Inc. developed the vehicles under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. They were built to develop the technologies that would allow long-term, high-altitude aircraft to serve as atmospheric satellites, to perform atmospheric research tasks as well as serve as communications platforms. It was developed from the NASA Pathfinder and NASA Centurion aircraft.

<span class="mw-page-title-main">Aurora Flight Sciences</span>

Aurora Flight Sciences is an American aviation and aeronautics research subsidiary of Boeing which primarily specializes in the design and construction of special-purpose Unmanned aerial vehicles. Aurora has been established for 20+ years and their headquarters is at the Manassas Regional Airport in Manassas, Virginia.

<span class="mw-page-title-main">AeroVironment Wasp III</span> Unmanned aerial vehicle (UAV) developed for United States Air Force special forces

The AeroVironment Wasp III Small Unmanned Aircraft System is a miniature UAV developed for United States Air Force special operations to provide a small, light-weight vehicle to provide beyond-line-of-sight situation awareness. The aircraft is equipped with two on-board cameras to provide real-time intelligence to its operators. It is also equipped with GPS and an Inertial Navigation System enabling it to operate autonomously from takeoff to recovery. It was designed by AeroVironment Inc., and was first added to the Air Force inventory in 2007. There are two Wasp variants: the traditional version that lands on land, and a version that lands into the sea or fresh water. The Air Force accepted the Wasp AE in late May 2012, and the U.S. Marine Corps revealed in January 2013 that they had ordered the Wasp AE. The Wasp AE is designated as the RQ-12A.

<span class="mw-page-title-main">AeroVironment T-20</span> Type of aircraft

The AeroVironment T-20 unmanned aerial vehicle (UAV) is a medium range, composite aircraft capable of internal and external payloads. Launched from a portable catapult, it can be recovered with a shipboard landing system, or belly land on unimproved surfaces. The T-20 carries a retractable gimbal-mounted, digitally stabilized, electro-optical/infrared (EO/IR) camera that relays video in real time via a C-band LOS data link to the ground control station (GCS). Powered by a 4-stroke, fuel injected gasoline engine, the aircraft burns 2 lb (910 g) of fuel per hour at cruise. AeroVironment, Inc. acquired Arcturus UAV, the original developer of JUMP 20 and T-20 on February 22, 2021.

The AeroVironment Global Observer is a concept for a high-altitude, long endurance unmanned aerial vehicle, designed by AeroVironment (AV) to operate as a stratospheric geosynchronous satellite system with regional coverage.

<span class="mw-page-title-main">AeroVironment RQ-20 Puma</span> Type of aircraft

The AeroVironment RQ-20 Puma is an American unmanned aircraft system which is small, battery powered, and hand-launched. Its primary mission is surveillance and intelligence gathering using an electro-optical and infrared camera. It is produced by AeroVironment.

<span class="mw-page-title-main">Facebook Aquila</span> Type of aircraft

The Facebook Aquila is an experimental solar-powered drone developed by Facebook for use as an atmospheric satellite, intended to act as relay stations for providing internet access to remote areas. The Aquila first flew on 28 June 2016 with a second aircraft successfully flying in 2017. Internal development of the Aquila aircraft was stopped in June 2018.

HAPSMobile is a subsidiary of SoftBank planning to operate High Altitude Platform Station (HAPS) networks, with AeroVironment as a minority owner. HAPSMobile is developing the Hawk30 solar-powered unmanned aircraft for stratospheric telecommunications. It has a strategic relationship with Loon LLC, a subsidiary of Google's parent Alphabet Inc.

References

This article contains material that originally came from the web article "Unmanned Aerial Vehicles" by Greg Goebel, which exists in the Public Domain.PD-icon.svg This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration .

  1. 1 2 3 "NASA Armstrong Fact Sheet: Helios Prototype". NASA . 13 August 2015. Archived from the original on 2023-04-19.
  2. 1 2 3 NASA Centurion fact sheet, archived at archive.org, accessed September 8, 2008
  3. NASA Pathfinder fact sheet, archived at archive.org
  4. Investigation of the Helios Prototype Aircraft Mishap – Volume 1, T.E. Noll et al., January 2004
  5. NASA Centurion Fact Sheet archived at archive.org