Proof (truth)

Last updated

A proof is sufficient evidence or a sufficient argument for the truth of a proposition. [1] [2] [3] [4]

Contents

The concept applies in a variety of disciplines, [5] with both the nature of the evidence or justification and the criteria for sufficiency being area-dependent. In the area of oral and written communication such as conversation, dialog, rhetoric, etc., a proof is a persuasive perlocutionary speech act, which demonstrates the truth of a proposition. [6] In any area of mathematics defined by its assumptions or axioms, a proof is an argument establishing a theorem of that area via accepted rules of inference starting from those axioms and from other previously established theorems. [7] The subject of logic, in particular proof theory, formalizes and studies the notion of formal proof. [8] In some areas of epistemology and theology, the notion of justification plays approximately the role of proof, [9] while in jurisprudence the corresponding term is evidence, [10] with "burden of proof" as a concept common to both philosophy and law.

In most disciplines, evidence is required to prove something. Evidence is drawn from the experience of the world around us, with science obtaining its evidence from nature, [11] law obtaining its evidence from witnesses and forensic investigation, [12] and so on. A notable exception is mathematics, whose proofs are drawn from a mathematical world begun with axioms and further developed and enriched by theorems proved earlier.

Exactly what evidence is sufficient to prove something is also strongly area-dependent, usually with no absolute threshold of sufficiency at which evidence becomes proof. [13] [14] In law, the same evidence that may convince one jury may not persuade another. Formal proof provides the main exception, where the criteria for proofhood are ironclad and it is impermissible to defend any step in the reasoning as "obvious" (except for the necessary ability of the one proving and the one being proven to, to correctly identify any symbol used in the proof.); [15] for a well-formed formula to qualify as part of a formal proof, it must be the result of applying a rule of the deductive apparatus of some formal system to the previous well-formed formulae in the proof sequence. [16]

Proofs have been presented since antiquity. Aristotle used the observation that patterns of nature never display the machine-like uniformity of determinism as proof that chance is an inherent part of nature. [17] On the other hand, Thomas Aquinas used the observation of the existence of rich patterns in nature as proof that nature is not ruled by chance. [18]

Proofs need not be verbal. Before Copernicus, people took the apparent motion of the Sun across the sky as proof that the Sun went round the Earth. [19] Suitably incriminating evidence left at the scene of a crime may serve as proof of the identity of the perpetrator. Conversely, a verbal entity need not assert a proposition to constitute a proof of that proposition. For example, a signature constitutes direct proof of authorship; less directly, handwriting analysis may be submitted as proof of authorship of a document. [20] Privileged information in a document can serve as proof that the document's author had access to that information; such access might in turn establish the location of the author at certain time, which might then provide the author with an alibi.

Proof vs evidence

18th-century Scottish philosopher David Hume built on Aristotle's separation of belief from knowledge, [21] recognizing that one can be said to "know" something only if one has firsthand experience with it, in a strict sense proof, while one can infer that something is true and therefore "believe" it without knowing, via evidence or supposition. This speaks to one way of separating proof from evidence:

If one cannot find their chocolate bar, and sees chocolate on their napping roommate's face, this evidence can cause one to believe their roommate ate the chocolate bar. But they do not know their roommate ate it. It may turn out that the roommate put the candy away when straightening up, but was thus inspired to go eat their own chocolate. Only if one directly experiences proof of the roommate eating it, perhaps by walking in on them doing so, does one know the roommate did it.

In an absolute sense, one can be argued not to "know" anything, except for the existence of one's own thoughts, as 17th-century philosopher John Locke pointed out. [22] Even earlier, Descartes addressed when saying cogito, ergo sum (I think, therefore I am). While Descartes was attempting to "prove" logically that the world exists, his legacy in doing so is to have shown that one cannot have such proof, because all of one's perceptions could be false (such as under the evil demon or simulated reality hypotheses). But one at least has proof of one's own thoughts existing, and strong evidence that the world exists, enough to be considered "proof" by practical standards, though always indirect and impossible to objectively confirm.

See also

Related Research Articles

An axiom, postulate, or assumption is a statement that is taken to be true, to serve as a premise or starting point for further reasoning and arguments. The word comes from the Ancient Greek word ἀξίωμα (axíōma), meaning 'that which is thought worthy or fit' or 'that which commends itself as evident'.

<span class="mw-page-title-main">Euclidean geometry</span> Mathematical model of the physical space

Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements. Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions (theorems) from these. Although many of Euclid's results had been stated earlier, Euclid was the first to organize these propositions into a logical system in which each result is proved from axioms and previously proved theorems.

Mathematical logic is the study of formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of formal systems of logic such as their expressive or deductive power. However, it can also include uses of logic to characterize correct mathematical reasoning or to establish foundations of mathematics.

<span class="mw-page-title-main">Theorem</span> In mathematics, a statement that has been proved

In mathematics, a theorem is a statement that has been proved, or can be proved. The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.

The philosophy of mathematics is the branch of philosophy that studies the assumptions, foundations, and implications of mathematics. It aims to understand the nature and methods of mathematics, and find out the place of mathematics in people's lives. The logical and structural nature of mathematics makes this branch of philosophy broad and unique.

Gödel's incompleteness theorems are two theorems of mathematical logic that are concerned with the limits of provability in formal axiomatic theories. These results, published by Kurt Gödel in 1931, are important both in mathematical logic and in the philosophy of mathematics. The theorems are widely, but not universally, interpreted as showing that Hilbert's program to find a complete and consistent set of axioms for all mathematics is impossible.

<span class="mw-page-title-main">History of logic</span>

The history of logic deals with the study of the development of the science of valid inference (logic). Formal logics developed in ancient times in India, China, and Greece. Greek methods, particularly Aristotelian logic as found in the Organon, found wide application and acceptance in Western science and mathematics for millennia. The Stoics, especially Chrysippus, began the development of predicate logic.

Deductive reasoning is the mental process of drawing deductive inferences. An inference is deductively valid if its conclusion follows logically from its premises, i.e. it is impossible for the premises to be true and the conclusion to be false.

In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences and the set of closed sentences provable from under some formal deductive system. The set of axioms is consistent when for no formula .

<span class="mw-page-title-main">Mathematical proof</span> Reasoning for mathematical statements

A mathematical proof is a deductive argument for a mathematical statement, showing that the stated assumptions logically guarantee the conclusion. The argument may use other previously established statements, such as theorems; but every proof can, in principle, be constructed using only certain basic or original assumptions known as axioms, along with the accepted rules of inference. Proofs are examples of exhaustive deductive reasoning which establish logical certainty, to be distinguished from empirical arguments or non-exhaustive inductive reasoning which establish "reasonable expectation". Presenting many cases in which the statement holds is not enough for a proof, which must demonstrate that the statement is true in all possible cases. A proposition that has not been proved but is believed to be true is known as a conjecture, or a hypothesis if frequently used as an assumption for further mathematical work.

Foundations of mathematics is the study of the philosophical and logical and/or algorithmic basis of mathematics, or, in a broader sense, the mathematical investigation of what underlies the philosophical theories concerning the nature of mathematics. In this latter sense, the distinction between foundations of mathematics and philosophy of mathematics turns out to be vague. Foundations of mathematics can be conceived as the study of the basic mathematical concepts and how they form hierarchies of more complex structures and concepts, especially the fundamentally important structures that form the language of mathematics also called metamathematical concepts, with an eye to the philosophical aspects and the unity of mathematics. The search for foundations of mathematics is a central question of the philosophy of mathematics; the abstract nature of mathematical objects presents special philosophical challenges.

In mathematics and logic, an axiomatic system is any set of axioms from which some or all axioms can be used in conjunction to logically derive theorems. A theory is a consistent, relatively-self-contained body of knowledge which usually contains an axiomatic system and all its derived theorems. An axiomatic system that is completely described is a special kind of formal system. A formal theory is an axiomatic system that describes a set of sentences that is closed under logical implication. A formal proof is a complete rendition of a mathematical proof within a formal system.

Metalogic is the study of the metatheory of logic. Whereas logic studies how logical systems can be used to construct valid and sound arguments, metalogic studies the properties of logical systems. Logic concerns the truths that may be derived using a logical system; metalogic concerns the truths that may be derived about the languages and systems that are used to express truths.

A formal system is an abstract structure used for inferring theorems from axioms according to a set of rules. These rules, which are used for carrying out the inference of theorems from axioms, are the logical calculus of the formal system. A formal system is essentially an "axiomatic system".

<span class="mw-page-title-main">Syntax (logic)</span> Rules used for constructing, or transforming the symbols and words of a language

In logic, syntax is anything having to do with formal languages or formal systems without regard to any interpretation or meaning given to them. Syntax is concerned with the rules used for constructing, or transforming the symbols and words of a language, as contrasted with the semantics of a language which is concerned with its meaning.

The laws of thought are fundamental axiomatic rules upon which rational discourse itself is often considered to be based. The formulation and clarification of such rules have a long tradition in the history of philosophy and logic. Generally they are taken as laws that guide and underlie everyone's thinking, thoughts, expressions, discussions, etc. However, such classical ideas are often questioned or rejected in more recent developments, such as intuitionistic logic, dialetheism and fuzzy logic.

<span class="mw-page-title-main">Fallibilism</span> Philosophical principle

Originally, fallibilism is the philosophical principle that propositions can be accepted even though they cannot be conclusively proven or justified, or that neither knowledge nor belief is certain. The term was coined in the late nineteenth century by the American philosopher Charles Sanders Peirce, as a response to foundationalism. Theorists, following Austrian-British philosopher Karl Popper, may also refer to fallibilism as the notion that knowledge might turn out to be false. Furthermore, fallibilism is said to imply corrigibilism, the principle that propositions are open to revision. Fallibilism is often juxtaposed with infallibilism.

Logic is the formal science of using reason and is considered a branch of both philosophy and mathematics and to a lesser extent computer science. Logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and the study of arguments in natural language. The scope of logic can therefore be very large, ranging from core topics such as the study of fallacies and paradoxes, to specialized analyses of reasoning such as probability, correct reasoning, and arguments involving causality. One of the aims of logic is to identify the correct and incorrect inferences. Logicians study the criteria for the evaluation of arguments.

Philosophy of logic is the area of philosophy that studies the scope and nature of logic. It investigates the philosophical problems raised by logic, such as the presuppositions often implicitly at work in theories of logic and in their application. This involves questions about how logic is to be defined and how different logical systems are connected to each other. It includes the study of the nature of the fundamental concepts used by logic and the relation of logic to other disciplines. According to a common characterization, philosophical logic is the part of the philosophy of logic that studies the application of logical methods to philosophical problems, often in the form of extended logical systems like modal logic. But other theorists draw the distinction between the philosophy of logic and philosophical logic differently or not at all. Metalogic is closely related to the philosophy of logic as the discipline investigating the properties of formal logical systems, like consistency and completeness.

References

  1. Proof and other dilemmas: mathematics and philosophy by Bonnie Gold, Roger A. Simons 2008 ISBN   0883855674 pages 12–20
  2. Philosophical Papers, Volume 2 by Imre Lakatos, John Worrall, Gregory Currie, ISBN Philosophical Papers, Volume 2 by Imre Lakatos, John Worrall, Gregory Currie 1980 ISBN   0521280303 pages 60–63
  3. Evidence, proof, and facts: a book of sources by Peter Murphy 2003 ISBN   0199261954 pages 1–2
  4. Logic in Theology – And Other Essays by Isaac Taylor 2010 ISBN   1445530139 pages 5–15
  5. Compare 1 Thessalonians 5:21: "Prove all things [...]."
  6. John Langshaw Austin: How to Do Things With Words . Cambridge (Mass.) 1962 – Paperback: Harvard University Press, 2nd edition, 2005, ISBN   0-674-41152-8.
  7. Cupillari, Antonella. The Nuts and Bolts of Proofs. Academic Press, 2001. Page 3.
  8. Alfred Tarski, Introduction to Logic and to the Methodology of the Deductive Sciences (ed. Jan Tarski). 4th Edition. Oxford Logic Guides, No. 24. New York and Oxford: Oxford University Press, 1994, xxiv + 229 pp. ISBN   0-19-504472-X
  9. "Foundationalist Theories of Epistemic Justification". The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University. 2018.
  10. "Definition of proof | Dictionary.com". www.dictionary.com.
  11. Reference Manual on Scientific Evidence, 2nd Ed. (2000), p. 71. Accessed May 13, 2007.
  12. John Henry Wigmore, A Treatise on the System of Evidence in Trials at Common Law, 2nd ed., Little, Brown, and Co., Boston, 1915
  13. Simon, Rita James & Mahan, Linda. (1971). "Quantifying Burdens of Proof—A View from the Bench, the Jury, and the Classroom". Law and Society Review. 5 (3): 319–330. doi:10.2307/3052837. JSTOR   3052837.
  14. Katie Evans; David Osthus; Ryan G. Spurrier. "Distributions of Interest for Quantifying Reasonable Doubt and Their Applications" (PDF). Archived from the original (PDF) on 2013-03-17. Retrieved 2007-01-14.
  15. A. S. Troelstra, H. Schwichtenberg (1996). Basic Proof Theory. In series Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, ISBN   0-521-77911-1.
  16. Hunter, Geoffrey, Metalogic: An Introduction to the Metatheory of Standard First-Order Logic, University of California Press, 1971
  17. Aristotle's Physics: a Guided Study, Joe Sachs, 1995 ISBN   0813521920 p. 70
  18. The treatise on the divine nature: Summa theologiae I, 1–13, by Saint Thomas Aquinas, Brian J. Shanley, 2006 ISBN   0872208052 p. 198
  19. Thomas S. Kuhn, The Copernican Revolution, pp. 5–20
  20. Trial tactics by Stephen A. Saltzburg, 2007 ISBN   159031767X page 47
  21. David Hume
  22. Locke: Knowledge of the External World