Psalmotoxin

Last updated
Psalmotoxin
PDB 1lmm EBI.jpg
Identifiers
Organism Psalmopoeus cambridgei
SymbolPcTx1
PDB 1lmm
UniProt P60514
Search for
Structures Swiss-model
Domains InterPro
See TCDB 8.B.10

Unknown parameter name

Psalmotoxin (PcTx1) is a spider toxin from the venom of the Trinidad tarantula Psalmopoeus cambridgei . [1] [2] It selectively blocks Acid Sensing Ion Channel 1-a (ASIC1a), which is a proton-gated sodium channel.

Contents

Sources

Psalmotoxin is a toxin produced in the venom glands of the South American tarantula Psalmopoeus cambridgei. [2]

Chemistry

The psalmotoxin structure can be classified as an inhibitor cystine knot (ICK) protein. Many ion channel effectors from snail, spider, and scorpion venoms share a similar ICK structure, although they possess very different pharmalogical profiles. Among ICK toxins, psalmotoxin is the only peptide known to act on homomeric ASIC1 channels. [3]

Psalmotoxin is a 40-amino acid peptide, possessing 6 cysteines linked by three disulfide bridges. The three-dimensional structure consists of a compact disulfide-bonded core from which three loops and the N and C termini emerge. The main element of the structure is a three-stranded antiparallel β-sheet. [4]

Target

Psalmopoeus cambridgei, subadult Psalmopoeus cambridgei 1.jpg
Psalmopoeus cambridgei, subadult

Psalmotoxin can bind to a particular isoform of the Acid Sensing Ion Channel, the Acid Sensing Ion Channel 1 (ASIC1). [5] The binding of psalmotoxin has an effect on both of the two splice variants known of ASIC1, ASIC1a and ASIC1b. [6] ASIC1 has two transmembrane components. After the first transmembrane component it forms a large extracellular bridge with the second transmembrane component, an extracellular loop. This extracellular loop contains cysteine rich domains. Psalmotoxin specifically binds these cysteine rich domains in the extracellular loop of ASIC1. This implicates this domain is the receptor site of ASIC1 for psalmotoxin. [7]

ASICs are proton-gated sodium channels. ASICs open when H+ binds. This occurs when the H+-concentration in the environment of the neuron is slightly higher compared to resting H+-concentrations (pH = 7.4). [6]

The expression of ASIC1a is high in both the central nervous system and in the sensory neurons of the dorsal root ganglia. ASIC1b is only expressed in sensory neurons. Expression of ASIC1a in the central nervous system relates to the involvement of ASIC1a in higher brain functions, such as learning, memory and fear conditioning. [8] Expression of ASIC1a and ASIC1b in sensory neurons relates to their involvement in nociception [9] [10] [11] [12] and taste. [13]

Mode of action

Binding of psalmotoxin to ASIC1a is reported to increase the affinity of ASIC1a for H+. This increase in affinity for H+ results in the shift of ASIC1a into the desensitized state at resting H+-concentrations (pH = 7.4). The channel being desensitized means that the ion channel is bound to its ligand, H+, but is not able to let ions pass through the ion channel. The underlying mechanism of how this increase in affinity for H+ accounts for a shift of the ASIC1a channels into the desensitized state is not yet specified. [6]

Psalmotoxin also interacts with ASIC1b. In contrast to psalmotoxin binding to ASIC1a, binding of psalmotoxin to ASIC1b results in promoting the opening of the channel. This agonistic effect of psalmotoxin on ASIC1b only occurs in slightly acidic conditions (pH = 7.1). [14]

Toxicity

The role of psalmotoxin in prey capture and the importance of ASIC1a channels as targets of venom components remains unclear. [1]

Therapeutic uses

Psalmotoxin is currently not used for therapeutic purposes, but understanding the psalmotoxin/ASIC1a interaction may be of therapeutic value. Recently, it has been shown that activation of ASIC1a during the acidosis accompanying brain ischemia leads to significant Ca2+ influx, which contributes to neuronal cell death. Inhibition of ASIC1a by psalmotoxin significantly decreased ischemic neuronal cell death. Therefore, it is suggested that desensitized ASIC1's by pharmacological intervention could be beneficial for patients at risk of having a stroke. [15] For the same reasons, psalmotoxin could contribute in the search for a cure for gliomas. [16] Inhibition of ASIC1a in the amygdala by psalmotoxin could have an anxiolytic effect. [17] As ASIC's play a role in nociception, psalmotoxin could be helpful in designing new analgesic drugs acting directly against pain at the nociceptor level. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Heteropodatoxin</span>

Heteropodatoxins are peptide toxins from the venom of the giant crab spider Heteropoda venatoria, which block Kv4.2 voltage-gated potassium channels.

Stromatoxin is a spider toxin that blocks certain delayed-rectifier and A-type voltage-gated potassium channels.

<span class="mw-page-title-main">ASIC1</span> Protein-coding gene in humans

Acid-sensing ion channel 1 (ASIC1) also known as amiloride-sensitive cation channel 2, neuronal (ACCN2) or brain sodium channel 2 (BNaC2) is a protein that in humans is encoded by the ASIC1 gene. The ASIC1 gene is one of the five paralogous genes that encode proteins that form trimeric acid-sensing ion channels (ASICs) in mammals. The cDNA of this gene was first cloned in 1996. The ASIC genes have splicing variants that encode different proteins that are called isoforms.

<span class="mw-page-title-main">ASIC3</span> Protein-coding gene in the species Homo sapiens

Acid-sensing ion channel 3 (ASIC3) also known as amiloride-sensitive cation channel 3 (ACCN3) or testis sodium channel 1 (TNaC1) is a protein that in humans is encoded by the ASIC3 gene. The ASIC3 gene is one of the five paralogous genes that encode proteins that form trimeric acid-sensing ion channels (ASICs) in mammals. The cDNA of this gene was first cloned in 1998. The ASIC genes have splicing variants that encode different proteins that are called isoforms.

<span class="mw-page-title-main">ASIC2</span> Protein-coding gene in the species Homo sapiens

Acid-sensing ion channel 2 (ASIC2) also known as amiloride-sensitive cation channel 1, neuronal (ACCN1) or brain sodium channel 1 (BNaC1) is a protein that in humans is encoded by the ASIC2 gene. The ASIC2 gene is one of the five paralogous genes that encode proteins that form trimeric acid-sensing ion channels (ASICs) in mammals. The cDNA of this gene was first cloned in 1996. The ASIC genes have splicing variants that encode different proteins that are called isoforms.

<span class="mw-page-title-main">Phrixotoxin</span>

Phrixotoxins are peptide toxins derived from the venom of the Chilean copper tarantula Phrixotrichus auratus, also named Paraphysa scrofa. Phrixotoxin-1 and -2 block A-type voltage-gated potassium channels; phrixotoxin-3 blocks voltage-gated sodium channels. Similar toxins are found in other species, for instance the Chilean rose tarantula.

<span class="mw-page-title-main">Acid-sensing ion channel</span> Class of transport proteins

Acid-sensing ion channels (ASICs) are neuronal voltage-insensitive sodium channels activated by extracellular protons permeable to Na+. ASIC1 also shows low Ca2+ permeability. ASIC proteins are a subfamily of the ENaC/Deg superfamily of ion channels. These genes have splice variants that encode for several isoforms that are marked by a suffix. In mammals, acid-sensing ion channels (ASIC) are encoded by five genes that produce ASIC protein subunits: ASIC1, ASIC2, ASIC3, ASIC4, and ASIC5. Three of these protein subunits assemble to form the ASIC, which can combine into both homotrimeric and heterotrimeric channels typically found in both the central nervous system and peripheral nervous system. However, the most common ASICs are ASIC1a and ASIC1a/2a and ASIC3. ASIC2b is non-functional on its own but modulates channel activity when participating in heteromultimers and ASIC4 has no known function. On a broad scale, ASICs are potential drug targets due to their involvement in pathological states such as retinal damage, seizures, and ischemic brain injury.

<span class="mw-page-title-main">Heteroscodratoxin-1</span>

Heteroscodratoxin-1 is a neurotoxin produced by the venom glands of Heteroscodra maculata that shifts the activation threshold of voltage-gated potassium channels and the inactivation of Nav1.1 sodium channels to more positive potentials.

<span class="mw-page-title-main">Vanillotoxin</span> Chemical compound

Vanillotoxins are neurotoxins found in the venom of the tarantula Psalmopoeus cambridgei. They act as agonists for the transient receptor potential cation channel subfamily V member 1 (TRPV1), activating the pain sensory system. VaTx1 and 2 also act as antagonists for the Kv2-type voltage-gated potassium channel (Kv2), inducing paralytic behavior in small animals.

<span class="mw-page-title-main">Guangxitoxin</span>

Guangxitoxin, also known as GxTX, is a peptide toxin found in the venom of the tarantula Plesiophrictus guangxiensis. It primarily inhibits outward voltage-gated Kv2.1 potassium channel currents, which are prominently expressed in pancreatic β-cells, thus increasing insulin secretion.

Hanatoxin is a toxin found in the venom of the Grammostola spatulata tarantula. The toxin is mostly known for inhibiting the activation of voltage-gated potassium channels, most specifically Kv4.2 and Kv2.1, by raising its activation threshold.

<span class="mw-page-title-main">Mambalgins</span>

Mambalgins are peptides found in the venom of the black mamba, an elapid snake. Mambalgins are members of the three-finger toxin (3FTx) protein family and have the characteristic three-finger protein fold. First reported by French researchers in 2012, mambalgins are unusual members of the 3FTx family in that they have the in vivo effect of causing analgesia without apparent toxicity. Their mechanism of action is potent inhibition of acid-sensing ion channels.

HsTx1 is a toxin from the venom of the scorpion Heterometrus spinifer. HsTx1 is a very potent inhibitor of the rat Kv1.3 voltage-gated potassium channel.

μ-THTX-Cl6a, also known as Cl6a, is a 33-residue peptide toxin extracted from the venom of the spider Cyriopagopus longipes. The toxin acts as an inhibitor of the tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel (NaV1.7), thereby causing sustained reduction of NaV1.7 currents.

<span class="mw-page-title-main">GiTx1</span>

GiTx1 (β/κ-theraphotoxin-Gi1a) is a peptide toxin present in the venom of Grammostola iheringi. It reduces both inward and outward currents by blocking voltage-gated sodium and potassium channels, respectively.

Protoxin-I, also known as ProTx-I, or Beta/omega-theraphotoxin-Tp1a, is a 35-amino-acid peptide neurotoxin extracted from the venom of the tarantula Thrixopelma pruriens. Protoxin-I belongs to the inhibitory cystine knot (ICK) family of peptide toxins, which have been known to potently inhibit voltage-gated ion channels. Protoxin-I selectively blocks low voltage threshold T-type calcium channels, voltage gated sodium channels and the nociceptor cation channel TRPA1. Due to its unique ability to bind to TRPA1, Protoxin-I has been implicated as a valuable pharmacological reagent with potential applications in clinical contexts with regards to pain and inflammation

<span class="mw-page-title-main">Versutoxin</span> Spider toxin

Delta hexatoxin Hv1 is a neurotoxic component found in the venom of the Australian funnel web spider.

<span class="mw-page-title-main">Double-knot toxin</span>

Double-knot toxin (DkTx), also known as Tau-theraphotoxin-Hs1a or Tau-TRTX-Hs1a, is a toxin found in the venom of the Chinese Bird spider, a tarantula species primarily living in the Guangxi province of China. This toxin, characterized by its bivalent structure of two Inhibitor Cysteine Knots (ICK), is thought to induce excruciating and long-lasting pain by activating the transient receptor potential vanilloid 1 (TRPV1) channel.

<span class="mw-page-title-main">GsMTx-4</span> Grammostola mechanotoxin 4

Grammostola mechanotoxin #4, also known as M-theraphotoxin-Gr1a (M-TRTX-Gr1a), is a neurotoxin isolated from the venom of the spider Chilean rose tarantula Grammostola spatulate. This amphiphilic peptide, which consists of 35 amino acids, belongs to the inhibitory cysteine knot (ICK) peptide family. It reduces mechanical sensation by inhibiting mechanosensitive channels (MSCs).

Phlotoxin is a neurotoxin from the venom of the tarantula Phlogiellus that targets mostly voltage-sensitive sodium channels and mainly Nav1.7. The only non-sodium voltage-sensitive channel that is inhibited by Phlotoxin is Kv3.4. Nav1.4 and Nav1.6 seem to be Phlotoxin-1-sensitive to some extent as well.

References

  1. 1 2 Nicholson, Graham M. (2006). "Spider Venom Peptides". In Kastin, Abba J. (ed.). Handbook of biologically active peptides. Academic Press. pp. 369–380 (376). ISBN   978-0-12-369442-3. OCLC   71846806.
  2. 1 2 3 Mazzuca M, Heurteaux C, Alloui A, Diochot S, Baron A, Voilley N, Blondeau N, Escoubas P, Gélot A, Cupo A, Zimmer A, Zimmer AM, Eschalier A, Lazdunski M (August 2007). "A tarantula peptide against pain via ASIC1a channels and opioid mechanisms". Nature Neuroscience. 10 (8): 943–5. doi:10.1038/nn1940. PMID   17632507. S2CID   19381729.
  3. Escoubas P, Bernard C, Lambeau G, Lazdunski M, Darbon H (July 2003). "Recombinant production and solution structure of PcTx1, the specific peptide inhibitor of ASIC1a proton-gated cation channels". Protein Science. 12 (7): 1332–43. doi:10.1110/ps.0307003. PMC   2323924 . PMID   12824480.
  4. Escoubas P, De Weille JR, Lecoq A, Diochot S, Waldmann R, Champigny G, Moinier D, Ménez A, Lazdunski M (August 2000). "Isolation of a tarantula toxin specific for a class of proton-gated Na+ channels". The Journal of Biological Chemistry. 275 (33): 25116–21. doi: 10.1074/jbc.M003643200 . PMID   10829030.
  5. Qadri YJ, Berdiev BK, Song Y, Lippton HL, Fuller CM, Benos DJ (June 2009). "Psalmotoxin-1 docking to human acid-sensing ion channel-1". The Journal of Biological Chemistry. 284 (26): 17625–33. doi: 10.1074/jbc.M109.003913 . PMC   2719401 . PMID   19395383.
  6. 1 2 3 Chen X, Kalbacher H, Gründer S (July 2005). "The tarantula toxin psalmotoxin 1 inhibits acid-sensing ion channel (ASIC) 1a by increasing its apparent H+ affinity". The Journal of General Physiology. 126 (1): 71–9. doi:10.1085/jgp.200509303. PMC   2266618 . PMID   15955877.
  7. Salinas M, Rash LD, Baron A, Lambeau G, Escoubas P, Lazdunski M (January 2006). "The receptor site of the spider toxin PcTx1 on the proton-gated cation channel ASIC1a". The Journal of Physiology. 570 (Pt 2): 339–54. doi:10.1113/jphysiol.2005.095810. PMC   1464308 . PMID   16284080.
  8. Wemmie JA, Chen J, Askwith CC, Hruska-Hageman AM, Price MP, Nolan BC, Yoder PG, Lamani E, Hoshi T, Freeman JH, Welsh MJ (April 2002). "The acid-activated ion channel ASIC contributes to synaptic plasticity, learning, and memory". Neuron. 34 (3): 463–77. doi: 10.1016/S0896-6273(02)00661-X . PMID   11988176.
  9. Sutherland SP, Benson CJ, Adelman JP, McCleskey EW (January 2001). "Acid-sensing ion channel 3 matches the acid-gated current in cardiac ischemia-sensing neurons". Proceedings of the National Academy of Sciences of the United States of America. 98 (2): 711–6. doi: 10.1073/pnas.011404498 . PMC   14653 . PMID   11120882.
  10. Voilley N, de Weille J, Mamet J, Lazdunski M (October 2001). "Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors". The Journal of Neuroscience. 21 (20): 8026–33. doi:10.1523/JNEUROSCI.21-20-08026.2001. PMC   6763876 . PMID   11588175.
  11. Mamet J, Baron A, Lazdunski M, Voilley N (December 2002). "Proinflammatory mediators, stimulators of sensory neuron excitability via the expression of acid-sensing ion channels". The Journal of Neuroscience. 22 (24): 10662–70. doi:10.1523/JNEUROSCI.22-24-10662.2002. PMC   6758460 . PMID   12486159.
  12. Chen CC, Zimmer A, Sun WH, Hall J, Brownstein MJ, Zimmer A (June 2002). "A role for ASIC3 in the modulation of high-intensity pain stimuli". Proceedings of the National Academy of Sciences of the United States of America. 99 (13): 8992–7. Bibcode:2002PNAS...99.8992C. doi: 10.1073/pnas.122245999 . PMC   124411 . PMID   12060708.
  13. Ugawa S, Yamamoto T, Ueda T, Ishida Y, Inagaki A, Nishigaki M, Shimada S (May 2003). "Amiloride-insensitive currents of the acid-sensing ion channel-2a (ASIC2a)/ASIC2b heteromeric sour-taste receptor channel". The Journal of Neuroscience. 23 (9): 3616–22. doi:10.1523/JNEUROSCI.23-09-03616.2003. PMC   6742202 . PMID   12736332.
  14. Chen X, Kalbacher H, Gründer S (March 2006). "Interaction of acid-sensing ion channel (ASIC) 1 with the tarantula toxin psalmotoxin 1 is state dependent". The Journal of General Physiology. 127 (3): 267–76. doi:10.1085/jgp.200509409. PMC   2151504 . PMID   16505147.
  15. Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA, Price MP, Welsh MJ, Simon RP (September 2004). "Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels". Cell. 118 (6): 687–98. doi: 10.1016/j.cell.2004.08.026 . PMID   15369669.
  16. Ross SB, Fuller CM, Bubien JK, Benos DJ (September 2007). "Amiloride-sensitive Na+ channels contribute to regulatory volume increases in human glioma cells". American Journal of Physiology. Cell Physiology. 293 (3): C1181-5. doi:10.1152/ajpcell.00066.2007. PMID   17615161.
  17. Dwyer JM, Rizzo SJ, Neal SJ, Lin Q, Jow F, Arias RL, Rosenzweig-Lipson S, Dunlop J, Beyer CE (March 2009). "Acid sensing ion channel (ASIC) inhibitors exhibit anxiolytic-like activity in preclinical pharmacological models". Psychopharmacology. 203 (1): 41–52. doi:10.1007/s00213-008-1373-7. PMID   18949460. S2CID   19373513.