Soil animals Last updated September 04, 2025 Invertebrates living in soil
Rotifera microscopic view SEM image of Milnesium tardigradum in active state - journal.pone.0045682.g001-2 Soil harbours a huge number of animal species (30% of arthropods live in soil), whether over their entire life or at least during larval stages. [ 1] Soil offers protection against environmental hazards, such as excess temperature and moisture fluctuations, in particular in arid and cold environments, [ 2] as well as against predation. [ 3] Soil provisions food over the year, especially since omnivory seems the rule rather than the execption, [ 4] and allows reproduction and egg deposition in a safe environment, even for those animals not currently living belowground. [ 5] Many soil invertebrates , and also some soil vertebrates , are tightly adapted to a subterranean concealed environment, being smaller, blind, depigmented, legfree or with reduced legs, and reproducing asexually , [ 6] with negative consequences on their colonization rate when the environment is changing at landscape scale. [ 7] It has been argued that soil could have been a crucible for the evolution of invertebrate terrestrial faunas, as an intermediary step in the transition from aquatic to aerial life. [ 8]
Soil fauna have been classified, according to increasing body size, in soil microfauna (20 μm to 200 μm), mesofauna (200 μm to 2 mm), macrofauna (2 mm to 2 cm) and megafauna (more than 2 cm). [ 9] The size of soil animals determines their place along soil trophic networks (soil foodwebs ), bigger species eating smaller species (predator-prey interactions) or modifying their environment (nested ecological niches ). [ 10] Among bigger species, soil engineers (e.g. earthworms , ants , termites , moles , gophers ) play a prominent role in soil formation [ 11] [ 12] [ 13] and vegetation development, [ 14] [ 15] [ 16] giving them the rank of ecosystem engineers .
From a functional point of view soil animals are tightly interconnected with soil microorganisms (bacteria, archaea, fungi, algae). [ 17] Soil microorganisms provide food to saprophagous and microbivorous species, [ 18] and play a significant role in the digestion of recalcitrant compounds by saprophagous animals. [ 19] In turn, soil animals, even the tiniest ones, create environments, e.g. digestive tracts, [ 20] feces, [ 21] cavities, [ 22] favourable to soil microorganisms, allow their dispersal for those unable to move by their own means (e.g. non-motile bacteria ), [ 23] and regulate their populations. [ 24]
The identification of soil animals, needing to be extracted (e.g. microarthropods , potworms , nematodes ), [ 25] expelled (earthworms ) [ 26] , trapped (e.g. carabids) [ 27] or searched by hand (e.g. termites , ants, millipedes , woodlice ) [ 28] before being observed under a dissecting , light microscope or electron microscope , [ 29] has slowed down the development of soil zoology compared to the aboveground. To a few exceptions (e.g. vertebrates) the identification of soil animals was only done by specialists, using various published or unpublished keys and their own collections. From a few decades on molecular tools such as DNA barcoding helped field ecologists to achieve complete lists of species or OTUs . [ 30] Such automated tools have been implemented in the study of nematodes, [ 31] protozoa, [ 32] and are still in development for other soil invertebrates such as earthworms and collembolans . [ 33] They will be most useful for giving us reliable estimates of soil biodiversity, taking into account the huge amount of cryptic species which cannot be identified by morphological criteria. [ 34]
Soil microfauna Soil microfauna comprise unicellular (protozoa ), and multicellular (nematodes , rotifers , tardigrades ) organisms. By their small size (20 μm to 200 μm) they are able to move within mesopores (30–75 μm) and macropores (>75 μm) where they find microorganisms (for microbivorous species) or other microfauna (for predatory species) as food. [ 35] To the exception of resting stages (e.g. eggs , cysts, dauer larvae ) microfauna are more often in tight contact with water films surrounding soil aggregates and roots (rhizoplane ). [ 36] Microfauna are involved in strong interactions with soil microorganisms, together consuming and stimulating them by rejuvenating microbial colonies. [ 37] Through the excretion of nutrients in a plant-available form (e.g. ammonium ) they contribute to plant nutrition . [ 38]
Although difficult to verify experimentally, [ 39] Clarholm's microbial loop hypothesis [ 40] explained how the growth of roots, when exploring a new environemnt, exerts a priming effect on quiescent soil bacteria which in turn are predated by naked amoeba , liberating nitrogen in a mineral form, further absorbed by root hairs , stimulating in turn the plant through a positive feedback process. [ 41]
Chemical signalling through the water film in which mesofauna are living (e. g. chemotaxis ) is strongly involved in intra-species (pheromone ) [ 42] [ 43] [ 44] and between-species (allomone ) [ 45] [ 46] communication. Mesofauna are also involved in chemical signalling with plants, in particular in parasitic forms (e. g. root-feeder nematodes). Interesting parallels between nematode-plant chemical interactions and plant-fungal symbioses (mycorrhizae ) have been suggested. [ 47]
Because of their physiological and locomotory dependence to pore water microfauna are very sensitive to moisture fluctuations. [ 48] Variations in population size of active forms (e.g. protozoan trophozoites ) are correlated with variations in soil moisture along precipitation cycles. [ 49] [ 50] However, resistant life-cycle cryptobiotic stages (e.g. protozoan resting cysts, nematode dauer larva , rotifer anhydrobiotes , tardigrade tuns), allow them to stay and wait for better conditions, restoring fully active metabolism with a few hours. [ 51] [ 52] [ 53] It can thus be postulated that, contrary to most other soil invertebrates , soil microfauna will not suffer to a critical extent from climate warming , [ 54] while they are highly sensitive to other man-induced global changes such as acid rains . [ 55]
Although sexual reproduction (including sexual conjugation ) is widespread in microfauna, allowing rapid adaptation (by genetic recombination ) to environmental heterogeneity both in space [ 56] and time, [ 57] asexual reproduction (e.g. parthenogenesis , fission ) is commonplace in protozoa (amoebae and flagellates ), [ 58] nematodes, [ 59] rotifers, [ 60] and tardigrades, [ 61] allowing them to rapidly exploit new or temporary environments [ 62] or new hosts for parasites. [ 63] Infestation of female gonads by bacteria belonging to the genus Wolbachia , hereditary transmitted through the germline , has been found to be responsible for the loss of sexual reproduction and shift to parthenogenesis in some lineages of parasitic nematodes. [ 64]
Soil mesofauna Soil mesofauna are invertebrates between 0.2 mm and 2 mm in size, which live in the soil or in a leaf litter layer on the soil surface. Members of this group include microarthropods (mites , springtails (collembola), proturans , diplurans , pseudoscorpions , symphyla , pauropods ), and enchytraeids (potworms). [ 65] By their intense consumption of plant remains (detritophagy ) and microorganisms (microbivory ) they play an important part in the carbon cycle and by their sentitivity to environmental hazards they are likely to be adversely affected by climate and land use change, and agricultural intensification . [ 66]
Soil mesofauna feed on a wide range of materials including other soil animals, microorganisms (bacteria, archaea, fungi, algae), live or decaying plant material, lichens, spores, and pollen. [ 67] Soil microarthropods play a negligible role in soil bioturbation and soil pore formation, [ 68] but enchytraeids dig the soil and create galleries in which they deposit their faeces , giving them the rank of ecosystem engineers in soils (or in times) with poor earthworm activity. [ 69] In addition to abovementioned food resources common to mesofauna, oribatid mites and springtails feed on decaying root material, a now fully recognized prominent food source for soil mesofauna. [ 70] The fecal material of soil macrofauna (e. g. earthworm casts ) is eaten and broken down by mesofauna. [ 71] Earthworm casts are pulverized by enchytraeids eating on them, [ 72] , exemplifying the dynamic nature of soil aggregates [ 73] and suggesting some kind of competition between two co-occurring ecosystem engineers of quite different size. [ 74] Contrary to microfauna the bigger size of mesofauna does not allow them to graze bacteria, which they consume together with organic and/or mineral matter while feeding on decaying plant material or animal faeces. [ 75] Fungal hyphae and spores are actively consumed by microarthropods and enchytraeids, giving them a prominent place in the regulation of fungal communities, including mycorrhizal fungi. [ 76] [ 77] Fungal-feeding mesofauna play both a positive (through dissemination of spores and hyphal fragments) [ 78] and a negative role (through severing connections) [ 79] in mycorrhization and more generally in the development of soil fungal colonies and their ecosystem services (e.g. decomposition ). [ 80] Predatory species (e. g. mesostimatid mites, pseudoscorpions) eat mainly on springtails , which are also submitted to an active predation from macrofauna (e. g. centipedes , ground beetles , spiders ), making springtails, with their high reproductive rate and large populations, a pivotal component of soil food webs , [ 81] mediating indirect effects of predation on soil ecosystem services. [ 82] However it has been shown that mesofauna customarily classified as saprophagous or microbivorous ingest also occasionally some animal prey (e. g. nematodes, protozoa, rotifers, tardigrades, small enchytraeids). [ 83] [ 84]
Contrary to enchytraeids, soil microarthropods do not have the ability to reshape the soil and, therefore, are forced to use the existing macropore network for their locomotion and access to food resources. [ 85] This makes them highly sensitive to soil compaction , [ 86] as it occurs under the influence of agricultural [ 87] and sylvicultural intensification. [ 88] Most species of soil mesofauna are susceptible to environmental changes through direct (e.g. plant litter quality, [ 89] soil acidity , [ 90] pollution , [ 91] microclimate ) [ 92] and indirect (e.g. dispersal limitation, [ 93] predation ) [ 94] influences. Some frost- and drought-resistant life forms exist, allowing mesofauna to await for better conditions, such as coccoons in enchytraeids, [ 95] diapausing eggs in Collembola. [ 96] Environmental heterogeneity is often reflected in the species composition of mesofaunal communities , [ 97] making these animals good bioindicators of soil quality . [ 98] However, they cannot track environmental changes when these are too rapid and in excess of their limited dispersal capacity, [ 99] or when the landscape is fragmented in patches and inhospitable matrices cannot be crossed. [ 100]
Mesofauna reproduce in a variety of ways. Potworms can reproduce both sexually [ 101] and asexually , by fragmentation (fission ) and subsequent regeneration as in the widespreaad Cognettia sphagnetorum . [ 102] Thrips and most probably also pauropods reproduce by parthenogenesis (thelytoky ). [ 103] [ 104] Diplurians , springtails and mites reproduce sexually, but some species facultatively or obligately reproduce by parthenogenesis, in particular those living deep in the soil. [ 105] Wolbachia infestation and transmittance through the female germline is involved in microarthropod parthenogenesis. [ 106]
Soil macrofauna Soil macrofauna are invertebrates between 2 mm and 2 cm in size, which live in the soil or in leaf litter . Known as soil engineers , earthworms , [ 107] termites , [ 108] ants , [ 109] some millipedes (e.g. Polydesmida ) [ 110] and some insect larvae (e.g. tenebrionids ), [ 111] can make the pore spaces and hence can change the soil structure , one important aspect of soil morphology . [ 112] By their size, their activity and abundance in the more fertile soils [ 113] they condition the existence of various soil organisms and are typical of mull humus forms , [ 114] harbouring a wide variety of trophic niches and more complex foodwebs . [ 115] Being more exacting in nutrients than smaller organisms, because of their accumulation of calcium and nitrogen in thick chitinous arthropod exoskeletons [ 116] and mollusc shells , [ 117] and the active secretion of nutrient-rich mucus by earthworms [ 118] and molluscs, [ 119] soil macroinvertebrates need a plant cover able to redistribute nutrients in the soil through fast leaf and root litter decomposition . [ 120] In turn, by favouring decomposer activity [ 121] and nutrient cycling , [ 122] macrofauna favours the growth of nutrient-exacting plant species, [ 123] a positive aboveground-belowground feed-back which has been suggested to be a win-win evolutionarily stable strategy at the scale of the ecosystem in biomes with biologically favourable (not too cold, not too dry) climate and weatherable minerals in the parent rock . [ 124]
Macrofauna feed on leaf litter (e.g. millipedes , [ 125] woodlice , [ 126] slugs , [ 127] snails , [ 128] tipulid larvae, [ 129] epigeic [ 130] and anecic (e.g. Lumbricus terrestris ) earthworms ), [ 131] wood (e.g. lower termites , [ 132] xylophagous beetles ), [ 133] humus (e.g. endogeic earthworms, [ 134] higher termites ), [ 135] roots (e.g. elaterid larvae) [ 136] or animal prey (e.g. centipedes , [ 137] spiders , [ 138] harvestmen , [ 139] carabids ), [ 140] flatworms ). [ 141] Litter- and soil-feeding macrofauna contribute to litter and organic matter decomposition by comminuting plant remains [ 142] and stimulating microbial activity of ingested soil, [ 143] the so-called 'sleeping beauty' paradigm, with the dormant bacteria as 'Sleeping Beauty' and the earthworm as 'Prince Charming'. [ 144] Enzymes of symbiotic gut microflora are necessary requirements of digestive capacities of saprophagous macrofauna, in particular those able to digest wood or soil organic matter. [ 145] In lower termites, symbiotic flagellates add their contribution to the digestion of lignocellulose in wood. [ 146] Ingested plant or soil material is finely ground in earthworm gizzards [ 147] and finely chewed by termite mandibles and mixed with saliva , [ 148] giving their faeces a pasty appearance, further hardened by drought as seen in the formation of stable structures such as earthworm casts [ 149] and termite mounds. [ 150]
Reproduction of macrofauna is mainly sexual, with males well-differentiated from females, as in spiders, [ 151] harvestmen, [ 152] centipedes, [ 153] carabids, [ 154] but hermaphroditism is the rule in earthworms [ 155] and molluscs (slugs, snails), [ 156] while some earthworm species are facultatively or obligately parthenogenetic . [ 157] Sexual reproduction (hermaphroditism) and asexual reproduction (parthenogenesis) are combined in free-living soil flatworms. [ 158]
Soil megafauna Soil megafauna are soil animals (vertebrates) more than 2 cm in size, living in the soil where they dig nests and galleries and reject earth at the soil surface as mounds . [ 159] They consist of fossorial mammals (e.g. moles , pocket gophers , voles , badgers , mole-rats , ground squirrels , suricates , lemmings ), birds (e.g. miners ), reptiles (e.g. skinks , gopher tortoises , burrowing snakes ) and amphibians (e.g. caecilians , mole salamanders ). They are present in all biomes , but are more particularly represented in arid areas where the soil offers them a harbour against harshness of the environment (e.g. drought , heat , UV-radiation ). Many other vertebrates live or rest in the soil temporarily, either for hibernation or protection against predation or both (e.g. rabbits , marmots , lemmings ), and thus like permanent dwellers they participate to soil life through their burrowing activities. [ 160] Most fossorial animals just dig the soil without feeding on it, and thus are not directly involved in decomposition and microbial-faunal relationships, but their mechanical disturbance of soil horizons may contribute to improve nutrient availability, [ 161] infiltration rate, [ 162] soil aeration , [ 163] mycorrhizal inoculation [ 164] and seed germination , [ 165] making them providers of important ecosystem services . [ 166]
Soil fossorial vertebrates are carnivorous, feeding on soil invertebrates (e.g. caecilians, [ 167] moles), [ 168] or herbivores, consuming roots, seeds and tubers (e.g. voles, pocket gophers). [ 169] They disseminate seeds and spores by carrying them on their fur , scales or feathers or incorporating them in their feces after gut transit. [ 170] Fossorial mammals contribute to disseminate mycorrhizal fungi when feeding on fruiting bodies , [ 171] and facilitate seed germination in their excavated mounds , [ 172] making them, beside and through their often reported influence on soil morphology , [ 173] important agents of vegetation dynamics, [ 174] [ 175] giving them the rank of ecosystem engineers. [ 176]
Reproduction occurs through the search for sexual partners , using chemical communication within social groups, [ 177] with an evolutionary link between group-living and fossoriality . [ 178] Fossoriality among vertebrates is associated with appendage reduction, [ 179] and has been considered as an evolutionary dead end in some groups like snakes . [ 180]
Often considered as pests by agriculturists , [ 181] the disappearance of fossorial vertebrates from entire landscapes was considered as an ecological catastrophe , in particular in arid and semi-arid environments where they are often considered as keystone species for soil health . [ 182] Special programmes for the reintroduction of endangered native species have been implemented in Australia. [ 183]
References ↑ Anthony, Mark A.; Bender, S. Franz; Van der Heijden, Marcel G. A. (7 August 2023). "Enumerating soil biodiversity" (PDF) . Proceedings of the National Academy of Sciences of the United States of America . 120 (33): e2304663120. doi :10.1073/pnas.2304663120 . Retrieved 30 July 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Cheruy, Frédérique; Dufresne, Jean-Louis; Mesbah, S. Aït; Grandpeix, Jean-Yves; Wang, Fuxing (December 2017). "Role of soil thermal inertia in surface temperature and soil moisture-temperature feedback" . Journal of Advances in Modeling Earth Systems . 9 (8): 2906– 19. doi : 10.1002/2017MS001036 . ↑ Karban, Richard; Grof-Tisza, Patrick; McMunn, Marshall; Kharouba, Heather; Huntzinger, Mikaela (1 December 2015). "Caterpillars escape predation in habitat and thermal refuges" . Ecological Entomology . 40 (6): 725– 31. doi : 10.1111/een.12243 . ↑ Potapov, Anton A.; Beaulieu, Frédéric; Birkhofer, Klaus; Bluhm, Sarah L.; Degtyarev, Maxim I.; Devetter, Miloslav; Goncharoov, Anton A.; Gongalsky, Konstantin B.; Klarner, Bernhard; Korobushkin, Daniil I.; Liebke, Dana F.; Maraun, Mark; McDonnell, Rory J.; Pollierer, Melanie M.; Schaefer, Ina; Shrubovych, Julia; Semenyuk, Irina I.; Sendra, Alberto; Tuma, Jiri; Tůmová, Michala; Vassilieva, Anna B.; Chen, Ting-Wen; Geisen, Stefan; Schmidt, Olaf; Tiunov, Alexei V.; Scheu, Stefan (June 2022). "Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates" . Biological Reviews . 97 (3): 1057– 117. doi : 10.1111/brv.12832 . ↑ Herzberg, Fred; Herzberg, Anne (October 1962). "Observations on reproduction in Helix aspersa " . American Midland Naturalist . 68 (2): 297– 306. doi :10.2307/2422735 . Retrieved 31 July 2025 . ↑ Ellers, Jacintha; Berg, Matty B.; Dias, André T. C.; Fontana, Simone; Ooms, Astra; Moretti, Marco (July 2018). "Diversity in form and function: vertical distribution of soil fauna mediates multidimensional trait variation" . Journal of Animal Ecology . 87 (4): 933– 44. doi : 10.1111/1365-2656.12838 . ↑ Ponge, Jean-François; Dubs, Florence; Gillet, Servane; Sousa, José Paulo; Lavelle, Patrick (May 2006). "Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes" . Soil Biology and Biochemistry . 38 (5): 1158– 61. doi :10.1016/j.soilbio.2005.09.004 . Retrieved 31 July 2025 . ↑ Vannier, Guy (February 1987). "The porosphere as an ecological medium emphasized in Professor Ghilarov's work on soil animal adaptations" . Biology and Fertility of Soils . 3 (1): 39– 44. doi :10.1007/BF00260577 . Retrieved 31 July 2025 . ↑ Aloui, Abdallah (2018). "Soil fauna" . Retrieved 31 July 2025 . ↑ Woodward, Guy; Ebenman, Bo; Emmerson, Mark; Montoya, Jose M.; Olesen, Jens M.; Valido, Alfredo; Warren, Philip H. (July 2005). "Body size in ecological networks" . Trends in Ecology and Evolution . 20 (7): 402– 9. doi :10.1016/j.tree.2005.04.005 . Retrieved 31 July 2025 . ↑ Lobry de Bruyn, Lisa; Conacher, Arthur J. (1990). "The role of termites and ants in soil modification: a review" . Australian Journal of Soil Research . 28 (1): 55– 93. doi :10.1071/SR9900055 . Retrieved 1 August 2025 . ↑ Frouz, Jan (2024). "The role of earthworms in soil formation" . In Kooch, Yahya; Kuzyakov, Yakov (eds.). Earthworms and ecological processes . Berlin, Germany: Springer Nature . pp. 323– 39. doi :10.1007/978-3-031-64510-5_11 . ISBN 978-3-031-64510-5 . Retrieved 1 August 2025 . ↑ Reichman, O. J.; Seabloom, Eric W. (1 January 2002). "The role of pocket gophers as subterranean ecosystem engineers" . Trends in Ecology & Evolution . 17 (11): 44– 9. doi :10.1016/S0169-5347(01)02329-1 . Retrieved 1 August 2025 . ↑ Xiao, Zhenggao; Wang, Xie; Koricheva, Julia; Kergunteuil, Alan; Le Bayon, Renée-Claire; Liu, Manqiang; Hu, Feng; Rasmann, Sergio (January 2018). "Earthworms affect plant growth and resistance against herbivores: a meta-analysis" . Functional Ecology . 32 (1): 150– 60. doi : 10.1111/1365-2435.12969 . ↑ Khan, Mohiuddin Aslam; Ahmad, Wasim; Paul, Bishwajeet (20 February 2018). "Ecological impacts of termites" . In Khan, Mohiuddin Aslam; Ahmad, Wasim (eds.). Termites and sustainable management, Volume 1, Biology, social behaviour and economic importance . Berlin, Germany: Springer Nature . pp. 201– 16. doi :10.1007/978-3-319-72110-1_10 . ISBN 978-3-319-72110-1 . Retrieved 1 August 2025 . ↑ Huntly, Nancy; Inouye, Richard (December 1988). "Pocket gophers in ecosystems: patterns and mechanisms" . BioScience . 38 (11): 786– 93. doi :10.2307/1310788 . Retrieved 1 August 2025 . ↑ Briones, Maria J. I. (7 December 2018). "The serendipitous value of soil fauna in ecosystem functioning: the unexplained explained" . Frontiers in Environmental Science . 6 : 149. doi : 10.3389/fenvs.2018.00149 . ↑ Scheu, Stefan (February 2002). "The soil food web: structure and perspectives" . European Journal of Soil Biology . 38 (1): 11– 20. doi :10.1016/S1164-5563(01)01117-7 . Retrieved 1 August 2025 . ↑ Lou, Xuliang; Zhao, Jianming; Lou, Xiangyang; Xia, Xiejiang; Feng, Yilu; Li, Hongjie (10 January 2022). "The biodegradation of soil organic matter in soil-dwelling humivorous fauna" . Frontiers in Bioengineering and Biotechnology . 9 : 808075. doi : 10.3389/fbioe.2021.808075 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ da Silva Correia, Dayana; Ribeiro Passos, Samuel; Neves Proença, Diogo; Vasconcelos Morais, Paula; Ribeiro Xavier, Gustavo; Fernandes Correia, Maria Elizabeth (October 2018). "Microbial diversity associated to the intestinal tract of soil invertebrates" . Applied Soil Ecology . 131 : 38– 46. doi :10.1016/j.apsoil.2018.07.009 . Retrieved 1 August 2025 . ↑ Martin, Agnès; Marinissen, J. C. Y. (1993). "Biological and physico-chemical processes in excrements of soil animals" . Geoderma . 56 (1): 331– 47. doi :10.1016/B978-0-444-81490-6.50031-5 . Retrieved 1 August 2025 . ↑ Foster, R. C. (May 1988). "Microenvironments of soil microorganisms" . Biology and Fertility of Soils . 6 (3): 189– 203. doi :10.1007/BF00260816 . Retrieved 1 August 2025 . ↑ Dighton, John; Jones, Helen E.; Robinson, Clare H.; Beckett, John (May 1997). "The role of abiotic factors, cultivation practices and soil fauna in the dispersal of genetically modified microorganisms in soils" . Applied Soil Ecology . 5 (2): 109– 31. doi :10.1016/S0929-1393(96)00137-0 . Retrieved 1 August 2025 . ↑ Bardgett, Richard D.; Keiller, S.; Cook, R.; Gilburn, André S. (15 April 1998). "Dynamic interactions between soil animals and microorganisms in upland grassland soils amended with sheep dung: a microcosm experiment" . Soil Biology and Biochemistry . 30 (4): 531– 9. doi :10.1016/S0038-0717(97)00146-6 . Retrieved 1 August 2025 . ↑ McSorley, Robert; Walter, David E. (15 February 1991). "Comparison of soil extraction methods for nematodes and microarthropods" . Agriculture, Ecosystems & Environment . 34 (1– 4): 201– 7. doi :10.1016/0167-8809(91)90106-8 . Retrieved 4 August 2025 . ↑ Singh, Jaswinder; Singh, Sharanpreet; Vig, Adarsh Pal (26 August 2015). "Extraction of earthworm from soil by different sampling methods: a review" . Environment, Development and Sustainability . 18 (6): 1521– 39. doi :10.1007/s10668-015-9703-5 . Retrieved 4 August 2025 . ↑ Spence, John R.; Niemelä, Jari K. (31 May 2012). "Sampling carabid assemblages with pitfall traps: the madness and the method" . The Canadian Entomologist . 126 (3): 881– 94. doi :10.4039/Ent126881-3 . Retrieved 4 August 2025 . ↑ Woomer, Paul Lester; Swift, Michael J. (1995). Biology and fertility of tropical soils : report of the Tropical Soil Biology and Fertility Programme (TSBF) 1994 . Nairobi, Kenya: Tropical Soil Biology and Fertility. Retrieved 4 August 2025 . ↑ Artois, Tom; Fontaneto, Diego; Hummon, William D.; McInnes, Sandra J.; Todaro, M. Antonio; Sørensen, Martin V.; Zullini, Aldo (August 2012). "Ubiquity of microscopic animals? Evidence from the morphological approach in species identification" . In Fontaneto, Diego (ed.). Biogeography of microscopic organisms: is everything small everywhere? . Cambridge, United Kingdom: Cambridge University Press . pp. 244– 83. doi :10.1017/CBO9780511974878.014 . ISBN 978-0511974878 . Retrieved 4 August 2025 . ↑ Orgiazzi, Alberto; Bonnet Dunbar, Martha; Panagos, Panos; De Groot, Gerard Arjen; Lemanceau, Philippe (January 2015). "Soil biodiversity and DNA barcodes: opportunities and challenges" . Soil Biology and Biochemistry . 80 : 244– 50. doi :10.1016/j.soilbio.2014.10.014 . Retrieved 5 August 2025 . ↑ Floyd, Robin; Abebe, Eyualem; Papert, Artemis; Blaxter, Mark (April 2002). "Molecular barcodes for soil nematode identification" . Molecular Ecology . 11 (4): 839– 50. doi :10.1046/j.1365-294X.2002.01485.x . Retrieved 5 August 2025 . ↑ Gamit, Amit; Amin, Dhruti (20 March 2024). "DNA barcoding techniques for protists" . In Amaresan, Natarajan; Chandarana, Komal A. (eds.). Practical handbook on soil protists . Springer protocols handbooks. New York, New York: Humana . pp. 165– 73. doi :10.1007/978-1-0716-3750-0_29 . ISBN 978-1-0716-3750-0 . ISSN 1949-2456 . Retrieved 5 August 2025 . ↑ Rougerie, Rodolphe; Decaëns, Thibaud; Deharveng, Louis; Porco, David; James, Sam W.; Chang, Chih-Han; Richard, Benoit; Potapov, Mikhail; Suhardjono, Yayuk; Hebert, Paul D. N. (August 2009). "DNA barcodes for soil animal taxonomy" . Pesquisa Agropecuaria Brasileira . 44 (8): 789– 801. doi : 10.1590/S0100-204X2009000800002 . ↑ Fernández Marchán, Daniel; Díaz Cosín, Darío J.; Novo, Marta (March–April 2018). "Why are we blind to cryptic species? Lessons from the eyeless" . European Journal of Soil Biology . 86 : 49– 51. doi :10.1016/j.ejsobi.2018.03.004 . Retrieved 5 August 2025 . ↑ Anderson, Jonathan M. (May 1988). "Spatiotemporal effects of invertebrates on soil processes" . Biology and Fertility of Soils . 6 (3): 216– 27. doi :10.1007/BF00260818 . Retrieved 5 August 2025 . ↑ Bonkowski, Michael; Cheng, Weixin; Griffiths, Bryan S.; Alphei, Jörn; Scheu, Stefan (July 2000). "Microbial-faunal interactions in the rhizosphere and effects on plant growth" . European Journal of Soil Biology . 36 (3– 4): 135– 47. doi :10.1016/S1164-5563(00)01059-1 . Retrieved 5 August 2025 . ↑ Mamilov, Anvar Sh.; Byzov, B. A.; Pokarzhevskii, A. D.; Zvyagintsev, Dmitrii Grigor’evich (September 2000). "Regulation of the biomass and activity of soil microorganisms by microfauna" . Microbiology . 69 (5): 612– 21. doi :10.1007/BF02756818 . Retrieved 5 August 2025 . ↑ Nadarajah, Kalaivani (July 2019). "Soil health: the contribution of microflora and microfauna" . In Varma, Ajit; Choudhary, Devendra K. (eds.). Mycorrhizosphere and pedogenesis . Singapore, Singapore: Springer . pp. 383– 400. ISBN 978-981-13-6480-8 . Retrieved 6 August 2025 . ↑ Bonkowski, Michael; Clarholm, Marianne (20 December 2012). "Stimulation of plant growth through interactions of bacteria and protozoa: testing the auxiliary microbial loop hypothesis" . Acta Protozoologica . 51 (3): 237– 47. doi : 10.4467/16890027AP.12.019.0765 . ↑ Clarholm, Marianne (September 1994). "The microbial loop in the soil". In Ritz, Karl; Dighton, John; Giller, Ken E. (eds.). Beyond the biomass: compositional and functional analysis of soil microbial communities . Chichester, United Kingdom: John Wiley & Sons . pp. 221– 30. ISBN 978-0471950967 . ↑ Clarholm, Marianne (January 1985). "Possible roles for roots, bacteria, protozoa and fungi in supplying nitrogen to plants" . In Fitter, Alastair H.; Atkinson, David; Read, David J.; Usher, Michael B. (eds.). Ecological interactions in soil: plants, microbes and animals . Oxford, United Kingdom: Blackwell Scientific Publications . pp. 355– 65. ISBN 978-0-632-01386-9 . Retrieved 5 August 2025 . ↑ Willard, Stacey S.; Devreotes, Peter N. (27 September 2006). "Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum " . European Journal of Cell Biology . 85 (9– 10): 897– 904. doi :10.1016/j.ejcb.2006.06.003 . Retrieved 6 August 2025 . ↑ Butcher, Rebecca A. (7 April 2017). "Decoding chemical communication in nematodes" . Natural Product Reports . 34 (5): 472– 7. doi :10.1039/C7NP00007C . Retrieved 6 August 2025 . ↑ Chartrain, Justine; Knott, K. Emily; Michalczyk, Łukasz; Calhim, Sara (22 September 2023). "First evidence of sex-specific responses to chemical cues in tardigrade mate searching behaviour" . Journal of Experimental Biology . 226 (18): 245836. doi : 10.1242/jeb.245836 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Wang, Jie; Guo, Changying; Wei, Xiaoli; Pu, Xiaojian; Zhao, Yuanyuan; Xu, Chengti; Wang, Wei (20 March 2025). "GPCR sense communication among interaction nematodes with other organisms" . International Journal of Molecular Sciences . 26 (6): 2822. doi : 10.3390/ijms26062822 . ↑ Song, Chunxu; Mazzola, Mark; Cheng, Xu; Oetjen, Janina; Alexandrov, Theodore; Dorrestein, Pieter; Watrous, Jeramie; Van der Voort, Menno; Raaijmakers, Jos M. (6 August 2015). "Molecular and chemical dialogues in bacteria-protozoa interactions" . Scientific Reports . 5 : 12837. doi : 10.1038/srep12837 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Bird, David McK. (August 2004). "Signaling between nematodes and plants" . Current Opinion in Plant Biology . 7 (4): 372– 6. doi :10.1016/j.pbi.2004.05.005 . Retrieved 6 August 2025 . ↑ Bouwman, Luitjen Albert; Zwart, Kor B. (November 1994). "The ecology of bacterivorous protozoans and nematodes in arable soil" . Agriculture, Ecosystems & Environment . 51 (1– 2): 145– 60. doi :10.1016/0167-8809(94)90040-X . Retrieved 7 August 2025 . ↑ McSorley, Robert (September 1997). "Relationship of crop and rainfall to soil nematode community structure in perennial agroecosystems" . Applied Soil Ecology . 6 (2): 147– 59. doi :10.1016/S0929-1393(97)00001-2 . Retrieved 7 August 2025 . ↑ Bischoff, Paul J. (2002). "An analysis of the abundance, diversity and patchiness of terrestrial gymnamoebae in relation to soil depth and precipitation events following a drought in southeastern U.S.A." Acta Protozoologica . 41 (2): 183– 9. Retrieved 7 August 2025 . ↑ Verni, Franco; Rosati, Giovanna (4 April 2011). "Resting cysts: a survival strategy in Protozoa Ciliophora" . Italian Journal of Zoology . 78 (2): 134– 45. doi : 10.1080/11250003.2011.560579 . ↑ Houthoofd, Koen; Braeckman, Bart P.; Lenaerts, Isabelle; Brys, Kristel; De Vreese, Annemie; Van Eygen, Sylvie; Vanfleteren, Jacques R. (9 August 2002). "Ageing is reversed, and metabolism is reset to young levels in recovering dauer larvae of C. elegans " . Experimental Gerontology . 37 (8– 9): 1015– 21. doi :10.1016/S0531-5565(02)00063-3 . Retrieved 8 August 2025 . ↑ Caprioli, Manuela; Ricci, Claudia (March 2001). "Recipes for successful anhydrobiosis in bdelloid rotifers" . Hydrobiologia . 446 (1): 13– 17. doi :10.1023/A:1017556602272 . Retrieved 8 August 2025 . ↑ Rebecchi, Lorena; Boschetti, Chiara; Nelson, Diane R. (16 December 2019). "Extreme-tolerance mechanisms in meiofaunal organisms: a case study with tardigrades, rotifers and nematodes" . Hydrobiologia . 847 : 2779–99. doi :10.1007/s10750-019-04144-6 . Retrieved 8 August 2025 . ↑ Zhou, Juan; Wu, Jianping; Huang, Jingxing; Sheng, Xiongjie; Dou, Xiaolin; Lu, Meng (February 2022). "A synthesis of soil nematode responses to global change factors" . Soil Biology and Biochemistry . 165 : 108538. doi :10.1016/j.soilbio.2021.108538 . Retrieved 8 August 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Becks, Lutz; Agrawal, Aneil F. (13 October 2010). "Higher rates of sex evolve in spatially heterogeneous environments" . Nature . 468 (7320): 89– 92. doi :10.1038/nature09449 . Retrieved 11 August 2025 . ↑ Crow, James F. (June 1992). "An advantage of sexual reproduction in a rapidly changing environment" . Journal of Heredity . 83 (3): 169– 73. doi :10.1093/oxfordjournals.jhered.a111187 . Retrieved 11 August 2025 . ↑ Hawes, R. S. J. (September 1963). "The emergence of asexuality in protozoa" . The Quarterly Review of Biology . 38 (3): 234– 42. doi :10.1086/403859 . Retrieved 8 August 2025 . ↑ Schratzberger, Michaela; Holterman, Martijn; Van Oevelen, Dick; Helder, Johannes (November 2019). "A worm's world: ecological flexibility pays off for free-living nematodes in sediments and soils" . BioScience . 69 (11): 867– 76. doi : 10.1093/biosci/biz086 . ↑ Birky, C. William Jr; Gilbert, John J. (May 1971). "Parthenogenesis in rotifers: the control of sexual and asexual reproduction" . American Zoologist . 11 (2): 245– 66. doi :10.1093/icb/11.2.245 . Retrieved 8 August 2025 . ↑ Sugiura, Kenta; Matsumoto, Midori (22 November 2021). "Sexual reproductive behaviours of tardigrades: a review" . Invertebrate Reproduction and Development . 65 (4): 279– 87. doi : 10.1080/07924259.2021.1990142 . ↑ Warren, Robert J. II; Mokadam, Chloe (29 November 2024). "Asexuality and species invasion" . Biodiversity and Conservation . 34 (1): 29– 43. doi :10.1007/s10531-024-02976-w . Retrieved 11 August 2025 . ↑ Gibson, Amanda K. (December 2019). "Asexual parasites and their extraordinary host ranges" . Integrative and Comparative Biology . 59 (6): 1463– 84. doi :10.1093/icb/icz075 . Retrieved 11 August 2025 . ↑ Haegeman, Annelies; Vanholme, Bartel; Jacob, Joachim; Vandekerckhove, Tom T. M.; Claeys, Myriam; Borgonie, Gaetan; Gheysen, Godelieve (15 July 2009). "An endosymbiotic bacterium in a plant-parasitic nematode: member of a new Wolbachia supergroup" . International Journal for Parasitology . 39 (9): 1045– 54. doi :10.1016/j.ijpara.2009.01.006 . Retrieved 11 August 2025 . ↑ "A chaos of delight" . A Chaos of Delight . Retrieved 11 August 2025 . ↑ Remelli, Sara; Ghobari, Hamed; Oliveira Filho, Luís Carlos Iunes (16 April 2024). "The role of soil mesofauna as indicators of sustainable ecosystem management plans" . Frontiers in Ecology and Evolution . 12 : 1400232. doi : 10.3389/fevo.2024.1400232 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Potapov, Anton M.; Beaulieu, Frédéric; Birkhofer, Klaus; Bluhm, Sarah L.; Degtyarev, Maxim I.; Devetter, Miloslav; Goncharov, Anton A.; Gongalsky, Kinstantin B.; Klarner, Bernhard; Korobushkin, Daniil I.; Liebke, Dana F.; Maraun, Mark; McDonnell, Rory J.; Pollierer, Melanie M.; Schaefer, Ina; Shrubovych, Julia; Semenyuk, Irina I.; Sendra, Alberto; Tuma, Jiri (June 2022). "Feeding habits and multifunctional classification of soil-associated consumers from protists to vertebrates" . Biological Reviews . 97 (3): 1057– 1117. doi : 10.1111/brv.12832 . ↑ Lee, Kenneth Ernest; Foster, R. C. (1991). "Soil fauna and soil structure" . Australian Journal of Soil Research . 29 (6): 745– 75. doi :10.1071/SR9910745 . Retrieved 12 August 2025 . ↑ Serbource, Cécile; Sammartino, Stéphane; Cornu, Sophie; Papillon, Justine; Adrien, Jérôme; Pelosi, Céline (January 2025). "Enchytraeids: small but important ecosystem engineers" . Geoderma . 453 : 117150. doi :10.1016/j.geoderma.2024.117150 . Retrieved 12 August 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Bluhm, Sarah L.; Eitzinger, Bernhard; Bluhm, Christian; Ferlian, Olga; Heidemann, Kerstin; Ciobanu, Marcel; Maraun, Mark; Scheu, Stefan (4 March 2021). "The impact of root-derived resources on forest soil invertebrates depends on body size and trophic position" . Frontiers in Forests and Global Change . 4 . doi : 10.3389/ffgc.2021.622370 . ↑ Salmon, Sandrine (17 September 2004). "The impact of earthworms on the abundance of Collembola: improvement of food resources or of habitat?" . Biology and Fertility of Soils . 40 (5): 323– 33. doi :10.1007/s00374-004-0782-y . Retrieved 12 August 2025 . ↑ Babel, Ulrich (1975). "Micromorphology of soil organic matter" . In Gieseking, John E. (ed.). Soil components, Volume 1, Organic components . Berlin, Germany: Springer-Verlag . pp. 369– 473. doi :10.1007/978-3-642-65915-7_7 . ISBN 978-3-540-06861-7 . Retrieved 12 August 2025 . ↑ Lehmann, Johannes; Kleber, Markus (23 November 2015). "The contentious nature of soil organic matter" . Nature . 528 (7580): 60– 8. doi :10.1038/nature16069 . Retrieved 12 August 2025 . ↑ Domínguez, Anahi; Bedano, José Camilo (March–April 2016). "Earthworm and enchytraeid co-occurrence pattern in organic and conventional farming: consequences for ecosystem engineering" (PDF) . Soil Science . 181 (3– 4): 148– 56. doi :10.1097/SS.0000000000000146 . Retrieved 12 August 2025 . ↑ Saur, Étienne; Ponge, Jean-François (September 1988). "Alimentary studies on the Collembolan Paratullbergia callipygos using transmission electron microscopy" . Pedobiologia . 31 (5– 6): 355– 80. doi :10.1016/S0031-4056(23)02274-6 . Retrieved 13 August 2025 . ↑ Hernández-Santiago, Faustino; Díaz-Aguilar, Irma; Pérez-Moreno, Jesús; Tovar-Salinas, Jorge L. (29 April 2020). "Interactions between soil mesofauna and edible ectomycorrhizal mushrooms" . In Pérez-Moreno, Jesús; Guerin-Laguette, Alexis; Arzú, Roberto Flores; Yu, Fu-Qiang (eds.). Mushrooms, humans and nature in a changing world . Cham, Switzerland: Springer Nature . pp. 367– 405. doi :10.1007/978-3-030-37378-8_14 . ISBN 978-3-030-37378-8 . Retrieved 13 August 2025 . ↑ Hedlund, Katarina; Augustsson, Annakarin (July 1995). "Effects of enchytraeid grazing on fungal growth and respiration" . Soil Biology and Biochemistry . 27 (7): 905– 9. doi :10.1016/0038-0717(95)00016-8 . Retrieved 13 August 2025 . ↑ Seres, Anikó; Bakonyi, Gabor; Posta, Katalin (January 2007). "Collembola(Insecta) disperse the arbuscular mycorrhizal fungi in the soil: pot experiment" . Polish Journal of Ecology . 55 (2): 395– 9. Retrieved 13 August 2025 . ↑ Johnson, David; Krsek, Martin; Wellington, Elizabeth M. H.; Stott, Andrew W.; Cole, Lisa; Bardgett, Richard D.; Read, David J.; Leake, Jonathan R. (12 August 2005). "Soil invertebrates disrupt carbon flow through fungal networks" . Science . 309 (5737): 1047. doi :10.1126/science.1114769 . Retrieved 13 August 2025 . ↑ Lenoir, Lisette; Persson, Tryggve; Bengtsson, Jan; Wallander, Håkan; Wirén, Anders (26 April 2006). "Bottom–up or top–down control in forest soil microcosms? Effects of soil fauna on fungal biomass and C/N mineralisation" . Biology and Fertility of Soils . 43 (3): 281– 94. doi :10.1007/s00374-006-0103-8 . Retrieved 14 August 2025 . ↑ Scheu, Stefan (February 2002). "The soil food web: structure and perspectives" . European Journal of Soil Biology . 38 (1): 11– 20. doi :10.1016/S1164-5563(01)01117-7 . Retrieved 14 August 2025 . ↑ Lawrence, Kendra L.; Wise, David H. (2000). "Spider predation on forest-floor Collembola and evidence for indirect effects on decomposition" . Pedobiologia . 44 (1): 33– 9. doi :10.1078/S0031-4056(04)70026-8 . Retrieved 14 August 2025 . ↑ Chernova, Nina Mikhailovna; Bokova, Anna I.; Varshav, E. V.; Goloshchapova, N. P.; Savenkova, Yu. Yu. (November 2007). "Zoophagy in Collembola" . Entomological Review . 87 (7): 799– 811. doi :10.1134/S0013873807070020 . Retrieved 14 August 2025 . ↑ Velazco, Víctor Nicolás; Saravia, Leonardo Ariel; Coviella, Carlos Eduardo; Falco, Liliana Beatriz (October 2023). "Trophic resources of the edaphic microarthropods: a worldwide review of the empirical evidence" . Helyon . 9 (10): e20439. doi : 10.1016/j.heliyon.2023.e20439 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Lu, Jing-Zhong; Zarebanadkouki, Mohsen; Schlüter, Steffen; Pollierer, Melanie M.; Scheu, Stefan; Nunan, Naoise; Erktan, Amandine (3 August 2024). "Location in soil pores as determinant of resource accessibility for microarthropods" . Retrieved 14 August 2025 . ↑ Larsen, Thomas; Schjønning, Per; Axelsen, Jørgen (July 2004). "The impact of soil compaction on euedaphic Collembola" . Applied Soil Ecology . 26 (3): 273– 81. doi :10.1016/j.apsoil.2003.12.006 . Retrieved 14 August 2025 . ↑ Hamza, Mohieddinne A.; Anderson, Walter K. (June 2005). "Soil compaction in cropping systems: a review of the nature, causes and possible solutions" . Soil and Tillage Research . 82 (2): 121– 45. doi :10.1016/j.still.2004.08.009 . Retrieved 15 August 2025 . ↑ Nazari, Meisam; Eteghadipour, Mohammad; Zarebanadkouki, Mohsen; Ghorbani, Mohammad; Dippold, Michaela A.; Bilyera, Nataliya; Zamanian, Kazem (3 December 2021). "Impacts of logging-associated compaction on forest soils: a meta-analysis" . Frontiers in Forests and Global Change . 4 . doi : 10.3389/ffgc.2021.780074 . ↑ Ilieva-Makulec, Krassimira; Olejniczak, Izabella; Szanser, Maciej (November 2006). "Response of soil micro- and mesofauna to diversity and quality of plant litter" . European Journal of Soil Biology . 42 (Supplementum 1): 5244– 9. doi :10.1016/j.ejsobi.2006.07.030 . Retrieved 18 August 2025 . ↑ Loranger, Gladys; Bandyopadhyaya, Ipsa; Razaka, Barbara; Ponge, Jean-François (March 2001). "Does soil acidity explain altitudinal sequences in collembolan communities?" . Soil Biology and Biochemistry . 33 (3): 381– 93. doi :10.1016/S0038-0717(00)00153-X . Retrieved 18 August 2025 . ↑ Kapusta, Paweł; Sobczyk, Łukasz (1 December 2015). "Effects of heavy metal pollution from mining and smelting on enchytraeid communities under different land management and soil conditions" . Science of the Total Environment . 536 : 517– 26. doi :10.1016/j.scitotenv.2015.07.086 . Retrieved 18 August 2025 . ↑ Heiniger, Charlène; Barot, Sébastien; Ponge, Jean-François; Salmon, Sandrine; Meriguet, Jacques; Carmignac, David; Suillerot, Margot; Dubs, Florence (July 2015). "Collembolan preferences for soil and microclimate in forest and pasture communities" . Soil Biology and Biochemistry . 86 : 181– 92. doi :10.1016/j.soilbio.2015.04.003 . Retrieved 18 August 2025 . ↑ Ponge, Jean-François; Dubs, Florence; Gillet, Servane; Sousa, José Paulo; Lavelle, Patrick (May 2006). "Decreased biodiversity in soil springtail communities: the importance of dispersal and landuse history in heterogeneous landscapes" . Soil Biology and Biochemistry . 38 (5): 1158– 61. doi :10.1016/j.soilbio.2005.09.004 . Retrieved 18 August 2025 . ↑ Salmon, Sandrine; Geoffroy, Jean-Jacques; Ponge, Jean-François (March 2005). "Earthworms and collembola relationships: effects of predatory centipedes and humus forms" . Soil Biology and Biochemistry . 37 (3): 487– 95. doi :10.1016/j.soilbio.2004.08.011 . Retrieved 18 August 2025 . ↑ Bauer, Roswitha (June–December 2002). "Survival of frost and drought conditions in the soil by enchytraeids (Annelida; Oligochaeta) in Arctic, subalpine and temperate areas" . European Journal of Soil Biology . 38 (3– 4): 251– 4. doi :10.1016/S1164-5563(02)01154-8 . Retrieved 18 August 2025 . ↑ Leinaas, Hans Petter; Bleken, Erik (May 1983). "Egg diapause and demographic strategy in Lepidocyrtus lignorum Fabricius (Collembola; Entomobryidae)" . Oecologia . 58 (2): 194– 9. doi :10.1007/BF00399216 . Retrieved 18 August 2025 . ↑ Salmon, Sandrine; Ponge, Jean-François; Gachet, Sophie; Deharveng, Louis; Lefebvre, Noella; Delabrosse, Florian (August 2014). "Linking species, traits and habitat characteristics of Collembola at European scale" . Soil Biology and Biochemistry . 75 : 73– 85. doi :10.1016/j.soilbio.2014.04.002 . Retrieved 18 August 2025 . ↑ George, Paul B. L.; Keith, Aidan M.; Creer, Simon; Barrett, Gaynor L.; Lebron, Inma; Emmett, Bridget A.; Robinson, David A.; Jones, David L. (December 2017). "Evaluation of mesofauna communities as soil quality indicators in a national-level monitoring programme" (PDF) . Soil Biology and Biochemistry . 115 : 537– 46. doi :10.1016/j.soilbio.2017.09.022 . Retrieved 18 August 2025 . ↑ Gan, Huijie; Zak, Donald R.; Hunter, Mark D. (May 2019). "Scale dependency of dispersal limitation, environmental filtering and biotic interactions determine the diversity and composition of oribatid mite communities" . Pedobiologia . 74 : 43– 53. doi :10.1016/j.pedobi.2019.03.002 . Retrieved 19 August 2025 . ↑ Rantalainen, Minna-Liisa; Haimi, Jari; Fritze, Hannu; Setälä, Heikki (December 2006). "Effects of small-scale habitat fragmentation, habitat corridors and mainland dispersal on soil decomposer organisms" . Applied Soil Ecology . 34 (2– 3): 152– 9. doi :10.1016/j.apsoil.2006.03.004 . Retrieved 19 August 2025 . ↑ Christensen, Bent (1973). "Density dependence of sexual reproduction in Enchytraeus bigeminus (Enchytraeidae)" . Oikos . 24 (2): 287– 94. doi :10.2307/3543887 . Retrieved 19 August 2025 . ↑ Sjögren, Maria; Augustsson, Annakarin; Rundgren, Sten (May 1995). "Dispersal and fragmentation of the enchytraeid Cognettia sphagnetorum in metal polluted soil" . Pedobiologia . 39 (3): 207– 18. doi :10.1016/S0031-4056(24)00199-9 . Retrieved 15 August 2025 . ↑ Arakaki, Norio; Miyoshi, Teikichi; Noda, Hiroaki (22 May 2001). "Wolbachia –mediated parthenogenesis in the predatory thrips Franklinothrips vespiformis (Thysanoptera: Insecta)" . Proceedings of the Royal Society B . 268 (1471). doi :10.1098/rspb.2001.1628 . Retrieved 19 August 2025 . ↑ Hågvar, Sigmund; Scheller, Ulf (May 1998). "Species composition, developmental stages and abundance of Pauropoda in coniferous forest soils of southeast Norway" . Pedobiologia . 42 (3): 278– 82. doi :10.1016/S0031-4056(24)00458-X . Retrieved 19 August 2025 . ↑ Chernova, Nina Mikhailovna; Potapov, Mikhail B.; Savenkova, Yu. Yu.; Bokova, Anna I. (24 March 2010). "Ecological significance of parthenogenesis in Collembola" . Entomological Review . 90 (1): 23– 38. doi :10.1134/S0013873810010033 . Retrieved 19 August 2025 . ↑ Tischer, Marta; Bleidorn, Christoph (September 2024). "Further evidence of low infection frequencies of Wolbachia in soil arthropod communities" . Infection, Genetics and Evolution . 123 : 105641. doi : 10.1016/j.meegid.2024.105641 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Lavelle, Patrick; Spain, Alister V. (2024). "Earthworms as soil ecosystem engineers" . In Kooch, Yahya; Kuzyakov, Yakov (eds.). Earthworms and ecological processes . Berlin, Germany: Springer Nature . pp. 455– 83. doi :10.1007/978-3-031-64510-5_18 . ISBN 978-3-031-64510-5 . Retrieved 20 August 2025 . ↑ Jouquet, Pascal; Bottinelli, Nicolas; Shanbhag, Rashmi R.; Bourguignon, Thomas; Traoré, Saran; Abbasi, Shahid Abbas (March–April 2016). "Termites: the neglected soil engineers of tropical soils" . Soil Science . 181 (3– 4): 157– 65. doi :10.1097/SS.0000000000000119 . Retrieved 20 August 2025 . ↑ Leite, Pedro A. M.; Carvalho, Martinho C.; Wilcox, Bradford P. (1 August 2018). "Good ant, bad ant? Soil engineering by ants in the Brazilian Caatinga differs by species" . Geoderma . 323 : 65– 73. doi :10.1016/j.geoderma.2018.02.040 . Retrieved 20 August 2025 . ↑ Yashwant, Patne; Rajesh, Achegawe; Baisthakur, Pankaj; Ravi, Barde (25 November 2024). "Millipedes as ecosystem engineers: their role in nutrient cycling, soil health and biotechnological significance" . International Journal of Entomology Research . 9 (11): 168– 76. Retrieved 20 August 2025 . ↑ Raś, Marcin; Kamiński, Marcin Jan; Iwan, Dariuz (2 August 2022). "Fossoriality in desert-adapted tenebrionid (Coleoptera) larvae" . Scientific Reports . 12 : 13233. doi : 10.1038/s41598-022-17581-6 . ↑ Franco, André L C.; Cherubin, Mauricio R.; Cerri, Carlos E. P.; Six, Johan; Wall, Diana H.; Cerri, Carlos C. (November 2020). "Linking soil engineers, structural stability, and organic matter allocation to unravel soil carbon responses to land-use change" . Soil Biology and Biochemistry . 150 : 107998. doi :10.1016/j.soilbio.2020.107998 . Retrieved 19 August 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Cole, Lisa; Bradford, Mark A.; Shaw, Peter J. A.; Bargett, Richard D. (September 2006). "The abundance, richness and functional role of soil meso- and macrofauna in temperate grassland: a case study" . Applied Soil Ecology . 33 (2): 186– 98. doi :10.1016/j.apsoil.2005.11.003 . Retrieved 26 August 2025 . ↑ David, Jean-François; Ponge, Jean-François; Delecour, Ferdinand (January 1993). "The saprophagous macrofauna of different types of humus in beech forests of the Ardenne (Belgium)" . Pedobiologia . 37 (1): 49– 56. doi :10.1016/S0031-4056(24)00085-4 . Retrieved 26 August 2025 . ↑ Bernier, Nicolas (February 2018). "Hotspots of biodiversity in the underground: a matter of humus form?" . Applied Soil Ecology . 123A : 305– 12. doi :10.1016/j.apsoil.2017.09.002 . Retrieved 26 August 2025 . ↑ Vincent, Julian F. V. (October 2002). "Arthropod cuticle: a natural composite shell system" . Composites, Part A, Applied Science and Manufacturing . 33 (10): 1311– 5. doi :10.1016/S1359-835X(02)00167-7 . Retrieved 27 August 2025 . ↑ Weiner, Stephen; Traub, Wolfie (13 February 1984). "Macromolecules in mollusc shells and their functions in biomineralization" . Philosophical Transactions B . 304 (11121): 425– 34. doi :10.1098/rstb.1984.0036 . Retrieved 27 August 2025 . ↑ Guhra, Tom; Stolze, Katharina; Shweizer, Steffen; Totsche, Kai Uwe (June 2020). "Earthworm mucus contributes to the formation of organo-mineral associations in soil" . Soil Biology and Biochemistry . 145 : 107785. doi :10.1016/j.soilbio.2020.107785 . Retrieved 27 August 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Fournié, Jean; Chétail, Monique (November 1984). "Calcium dynamics in land gastropods" . Integrative and Comparative Biology . 24 (4): 857– 70. doi :10.1093/icb/24.4.857 . Retrieved 27 August 2025 . ↑ Peng, Yan; Holmstrup, Martin; Schmidt, Inger Kappel; De Schrijver, An; Schelfhout, Stephanie; Heděnec, Petr; Zheng, Haifeng; Bachega, Luciana Ruggiero; Yue, Kai; Vesterdal, Lars (1 February 2022). "Litter quality, mycorrhizal association, and soil properties regulate effects of tree species on the soil fauna community" . Geoderma . 407 : 115570. doi :10.1016/j.geoderma.2021.115570 . Retrieved 27 August 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Pant, Madhuri; Negi, Girish C. S.; Kumar, Pramod (November 2017). "Macrofauna contributes to organic matter decomposition and soil quality in Himalayan agroecosystems, India" . Applied Soil Ecology . 120 (1– 3): 20– 9. doi :10.1016/j.apsoil.2017.07.019 . Retrieved 28 August 2025 . ↑ Chapuis-Lardy, Lydie; Le Bayon, Renée-Claire; Brossard, Michel; López-Hernández, Danilo; Blanchart, Éric (2011). "Role of soil macrofauna in phosphorus cycling" . In Bünemann, Else; Oberson, Astrid; Frossard, Emmanuel (eds.). Phosphorus in action: biological processes in soil phosphorus cycling . Berlin, Germany: Springer Nature . pp. 199– 213. doi :10.1007/978-3-642-15271-9_8 . ISBN 978-3-642-15271-9 . Retrieved 28 August 2025 . ↑ Sileshi, Gudeta W.; Arshad, Mohammad A.; Konaté, Souleymane; Nkunika, Philip O. Y. (October 2010). "Termite-induced heterogeneity in African savanna vegetation: mechanisms and patterns" . Journal of Vegetation Science . 21 (5): 923– 37. doi :10.1111/j.1654-1103.2010.01197.x . Retrieved 28 August 2025 . ↑ Ponge, Jean-François (July 2003). "Humus forms in terrestrial ecosystems: a framework to biodiversity" . Soil Biology and Biochemistry . 35 (7): 935– 45. doi :10.1016/S0038-0717(03)00149-4 . Retrieved 26 August 2025 . ↑ Suzuki, Yoriko; Grayston, Sue J.; Prescott, Cindy E. (February 2013). "Effects of leaf litter consumption by millipedes (Harpaphe haydeniana) on subsequent decomposition depends on litter type" . Soil Biology and Biochemistry . 57 (8– 9): 116– 23. doi :10.1016/j.soilbio.2012.07.020 . Retrieved 21 August 2025 . ↑ Zimmer, Martin; Topp, Werner (May 1997). "Does leaf litter quality influence population parameters of the common woodlouse, Porcellio scaber (Crustacea: Isopoda)?" . Biology and Fertility of Soils . 24 (4): 435– 41. doi :10.1007/s003740050269 . Retrieved 21 August 2025 . ↑ Jennings, Terry J.; Barkham, J. P. (January 1979). "Litter decomposition by slugs in mixed deciduous woodland" . Ecography . 2 (1): 21– 9. doi : 10.1111/j.1600-0587.1979.tb00678.x . ↑ Astor, Tina; Lenoir, Lisette; Berg, Matty P. (20 February 2015). "Measuring feeding traits of a range of litter-consuming terrestrial snails: leaf litter consumption, faeces production and scaling with body size" . Oecologia . 178 (3): 833– 45. doi :10.1007/s00442-015-3257-y . Retrieved 21 August 2025 . ↑ Lawson, Daniel L.; Klug, Michael J.; Merritt, Richard W. (November 1984). "The influence of the physical, chemical, and microbiological characteristics of decomposing leaves on the growth of the detritivore Tipula abdominalis (Diptera: Tipulidae)" . Canadian Journal of Zoology . 62 (11): 2339– 43. doi :10.1139/z84-342 . Retrieved 21 August 2025 . ↑ Manna, Madhab C.; Jha, Shankar; Ghosh, P. K.; Acharya, Chuni Lal (July 2003). "Comparative efficacy of three epigeic earthworms under different deciduous forest litters decomposition" . Bioresource Technology . 88 (3): 197– 206. doi :10.1016/S0960-8524(02)00318-8 . Retrieved 21 August 2025 . ↑ Daniel, Otto (December 1991). "Leaf-litter consumption and assimilation by juveniles of Lumbricus terrestris L. (Oligochaeta, Lumbricidae) under different environmental conditions" . Biology and Fertility of Soils . 12 (3): 202– 8. doi :10.1007/BF00337203 . Retrieved 21 August 2025 . ↑ Inoue, Tetsushi; Murashima, Koichiro; Azuma, Jun-Ichi; Sugimoto, Atsuko; Slaytor, Michael (March 1997). "Cellulose and xylan utilisation in the lower termite Reticulitermes speratus " . Journal of Insect Physiology . 43 (3): 235– 42. doi :10.1016/S0022-1910(96)00097-2 . Retrieved 21 August 2025 . ↑ Vodka, Stepan; Konvicka, Martin; Cizek, Lukas (16 December 2008). "Habitat preferences of oak-feeding xylophagous beetles in a temperate woodland: implications for forest history and management" . Journal of Insect Conservation . 13 (5): 553– 62. doi :10.1007/s10841-008-9202-1 . Retrieved 21 August 2025 . ↑ Lavelle, Patrick; Martin, Agnès (December 1992). "Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics" . Soil Biology and Biochemistry . 24 (12): 1491– 8. doi :10.1016/0038-0717(92)90138-N . Retrieved 21 August 2025 . ↑ Mikaelyan, Aram; Dietrich, Carsten; Köhler, Tim; Poulsen, Michael; Sillam-Dussès, David; Brune, Andreas (October 2015). "Diet is the primary determinant of bacterial community structure in the guts of higher termites" . Molecular Ecology . 24 (20): 5284– 95. doi :10.1111/mec.13376 . Retrieved 21 August 2025 . ↑ Sonnemann, Ilja; Grunz, Sonja; Wurst, Susanne (31 December 2013). "Horizontal migration of click beetle (Agriotes spp.) larvae depends on food availability" . Entomologia Experimentalis et Applicata . 150 (2): 174– 8. doi :10.1111/eea.12150 . Retrieved 21 August 2025 . ↑ Dugon, Michel M.; Arthur, Wallace (June 2012). "Prey orientation and the role of venom availability in the predatory behaviour of the centipede Scolopendra subspinipes mutilans (Arthropoda: Chilopoda)" . Journal of Insect Physiology . 58 (6): 874– 80. doi :10.1016/j.jinsphys.2012.03.014 . Retrieved 21 August 2025 . ↑ Pekár, Stano; Toft, Søren (August 2015). "Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae)" . Biological Reviews . 90 (3): 744– 61. doi :10.1111/brv.12133 . Retrieved 21 August 2025 . ↑ Powell, Erin C.; Painting, Christina J.; Hickey, Anthony J.; Machado, Glauco; Holwell, Gregory I. (11 May 2021). "Diet, predators, and defensive behaviors of New Zealand harvestmen (Opiliones: Neopilionidae)" . Journal of Arachnology . 49 (1): 122– 40. doi :10.1636/JoA-S-20-002 . Retrieved 22 August 2025 . ↑ Thomas, R. S.; Glen, David M.; Symondson, William O. C. (January 2008). "Prey detection through olfaction by the soil-dwelling larvae of the carabid predator Pterostichus melanarius " . Soil Biology and Biochemistry . 40 (1): 207– 16. doi :10.1016/j.soilbio.2007.08.002 . Retrieved 21 August 2025 . ↑ Ducey, Peter K.; Messere, Michael; Lapoint, Kelly; Noce, Stacey (April 1999). "Lumbricid prey and potential herpetofaunal predators of the invading terrestrial flatworm Bipalium adventitium (Turbellaria: Tricladida: Terricola)" . The American Midland Naturalist . 141 (2): 305– 14. doi :10.1674/0003-0031(1999)141[ 0305:LPAPHP] 2.0.CO; 2 . Retrieved 22 August 2025 . ↑ Ossola, Alessandro; Hahs, Amy K.; Nash, Michael A.; Livesley, Stephen J. (13 April 2016). "Habitat complexity enhances comminution and decomposition processes in urban ecosystems" . Ecosystems . 19 (5): 927– 41. doi :10.1007/s10021-016-9976-z . Retrieved 21 August 2025 . ↑ Scheu, Stefan (December 1987). "Microbial activity and nutrient dynamics in earthworm casts (Lumbricidae)" . Biology and Fertility of Soils . 5 (3): 230– 4. doi :10.1007/BF00256906 . Retrieved 21 August 2025 . ↑ Lavelle, Patrick; Barot, Sébastien; Blouin, Manuel; Decaëns, Thibaud; Jimenez, Juan José; Jouquet, Pascal (2007). "Earthworms as key actors in self-organized soil systems" . In Cuddington, Kim; Byers, James E.; Wilson, Willam G.; Hastings, Alan (eds.). Ecosystem engineers . Theoretical Ecology Series. Amsterdam, The Netherlands: Elsevier. pp. 77– 106. doi :10.1016/S1875-306X(07)80007-4 . ISBN 978-0-12-373857-8 . ISSN 1875-306X . Retrieved 21 August 2025 . ↑ König, Helmut (1 September 2006). "Bacillus species in the intestine of termites and other soil invertebrates" . Journal of Applied Microbiology . 101 (3): 620– 7. doi :10.1111/j.1365-2672.2006.02914.x . Retrieved 22 August 2025 . ↑ Ohkuma, Moriya (July 2008). "Symbioses of flagellates and prokaryotes in the gut of lower termites" . Trends in Microbiology . 16 (7): 345– 52. doi :10.1016/j.tim.2008.04.004 . Retrieved 22 August 2025 . ↑ Walia, Sohan Singh; Kaur, Tamanpreet (11 January 2024). "Anatomy of earthworms" . In Walia, Sohan Singh; Kaur, Tamanpreet (eds.). Earthworms and vermicomposting: species, procedures and crop application . Singapore: Springer. pp. 7– 16. doi :10.1007/978-981-99-8953-9_2 . ISBN 978-981-99-8953-9 . Retrieved 22 August 2025 . ↑ Ke, Jing; Laskar, Dhrubojyoti D.; Gao, Difeng; Chen, Shulin (5 March 2012). "Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process" . Biotechnology for Biofuels . 5 : 11. doi : 10.1186/1754-6834-5-11 . ↑ Marashi, Abdul R. A.; Scullion, John (17 April 2003). "Earthworm casts form stable aggregates in physically degraded soils" . Biology and Fertility of Soils . 37 (6): 375– 80. doi :10.1007/s00374-003-0617-2 . Retrieved 25 August 2025 . ↑ Brauman, Alain (July 2000). "Effect of gut transit and mound deposit on soil organic matter transformations in the soil feeding termite: a review" . European Journal of Soil Biology . 36 (3– 4): 117– 25. doi :10.1016/S1164-5563(00)01058-X . Retrieved 22 August 2025 . ↑ Cordellier, Mathilde; Schneider, Jutta M.; Uhl, Gabriele; Posnien, Nico (12 February 2020). "Sex differences in spiders: from phenotype to genomics" . Development Genes and Evolution . 230 (7): 155– 72. doi : 10.1007/s00427-020-00657-6 . ↑ Buzatto, Bruno A.; Machado, Glauco (November 2014). "Male dimorphism and alternative reproductive tactics in harvestmen (Arachnida: Opiliones)" . Behavioural Processes . 109A : 2– 13. doi :10.1016/j.beproc.2014.06.008 . Retrieved 25 August 2025 . ↑ Brena, Carlo; Green, Jack; Akam, Michael (6 August 2013). "Early embryonic determination of the sexual dimorphism in segment number in geophilomorph centipedes" . EvoDevo . 4 : 22. doi : 10.1186/2041-9139-4-22 . ↑ Benítez, Hugo A. (17 January 2013). "Assessment of patterns of fluctuating asymmetry and sexual dimorphism in carabid body shape" . Neotropical Entomology . 42 (2): 164– 9. doi :10.1007/s13744-012-0107-z . Retrieved 25 August 2025 . ↑ Domínguez, Jorge; Velando, Alberto (July 2013). "Sexual selection in earthworms: mate choice, sperm competition, differential allocation and partner manipulation" . Applied Soil Ecology . 69 : 21– 7. doi :10.1016/j.apsoil.2013.01.010 . Retrieved 25 August 2025 . ↑ Davison, Angus; Wade, Christopher M.; Mordan, Peter B.; Chiba, Satoshi (29 November 2005). "Sex and darts in slugs and snails (Mollusca: Gastropoda: Stylommatophora)" . Journal of Zoology . 267 (4): 329– 38. doi :10.1017/S0952836905007648 . Retrieved 21 August 2025 . ↑ Díaz Cosín, Darío J.; Novo, Marta; Fernández, Rosa (2011). "Reproduction of earthworms: sexual selection and parthenogenesis" . In Karaca, Ayten (ed.). Biology of earthworms . Berlin, Germany: Springer. pp. 69– 86. doi :10.1007/978-3-642-14636-7_5 . ISBN 978-3-642-14636-7 . Retrieved 22 August 2025 . ↑ Ramm, Steven A. (February 2017). "Exploring the sexual diversity of flatworms: ecology, evolution, and the molecular biology of reproduction" . Molecular Reproduction and Development . 84 (2): 120– 31. doi : 10.1002/mrd.22669 . ↑ Hasiotis, Stephen T.; Wellner, Robert W.; Martin, Anthony J.; Demko, Timothy M. (2004). "Vertebrate burrows from Triassic and Jurassic continental deposits of North America and Antarctica: their paleoenvironmental and paleoecological significance" . Ichnos . 11 (1– 2): 103– 24. doi :10.1080/10420940490428760 . Retrieved 3 September 2025 . ↑ Whitford, Walter J.; Kay, Fenton R. (February 1999). "Biopedturbation by mammals in deserts: a review" . Journal of Arid Environments . 41 (2): 203– 30. doi :10.1006/jare.1998.0482 . Retrieved 29 August 2025 . ↑ Canals, Rosa M.; Herman, Donald J.; Firestone, Mary K. (April 2003). "How disturbance by fossorial mammals alters N cycling in a California annual grassland" . Ecology . 84 (4): 875– 81. doi :10.1890/0012-9658(2003)084[ 0875:HDBFMA] 2.0.CO; 2 . Retrieved 29 August 2025 . ↑ Cui, Hongyan; Li, Wenjin; Chen, Jie; Li, Xiao Gang (September 2023). "Livestock and subterranean mammals have contrasting impacts on soil infiltration of grasslands" . Applied Soil Ecology . 189 : 104950. doi :10.1016/j.apsoil.2023.104950 . Retrieved 29 August 2025 . {{cite journal }}
: CS1 maint: article number as page number (link ) ↑ Platt, Brian F.; Kolb, Dakota J.; Kunhardt, Christian G.; Milo, Scott P.; New, Lee G. (March–April 2016). "The impact of soil-disturbing vertebrates on physical and chemical properties of soil" . Soil Science . 181 (3– 4): 175– 91. doi :10.1097/SS.0000000000000150 . Retrieved 29 August 2025 . ↑ Gehring, Catherine A.; Wolf, Julie E.; Theimer, Tad C. (July 2002). "Terrestrial vertebrates promote arbuscular mycorrhizal fungal diversity and inoculum potential in a rain forest soil" . Ecology Letters . 5 (4): 540– 8. doi :10.1046/j.1461-0248.2002.00353.x . Retrieved 29 August 2025 . ↑ Dunham, Amy E. (30 September 2011). "Soil disturbance by vertebrates alters seed predation, movement and germination in an African rain forest" . Journal of Tropical Ecology . 27 (6): 581– 9. doi :10.1017/S0266467411000344 . Retrieved 29 August 2025 . ↑ Mallen-Cooper, Max; Nakagawa, Shinichi; Eldridge, David J. (May 2019). "Global meta-analysis of soil-disturbing vertebrates reveals strong effects on ecosystem patterns and processes" . Global Ecology and Biogeography . 28 (5): 661– 79. doi :10.1111/geb.12877 . Retrieved 29 August 2025 . ↑ Jones, D. T.; Loader, Simon P.; Gower, David J. (May 2006). "Trophic ecology of East African caecilians (Amphibia: Gymnophiona), and their impact on forest soil invertebrates" . Journal of Zoology . 269 (1): 117– 26. doi :10.1111/j.1469-7998.2006.00045.x . Retrieved 29 August 2025 . ↑ Hisaw, Frederick L. (February 1923). "Feeding habits of moles" . Journal of Mammalogy . 4 (1): 9– 20. doi :10.2307/1373522 . Retrieved 29 August 2025 . ↑ Andersen, Douglas C. (September 1987). "Below-ground herbivory in natural communities: a review emphasizing fossorial animals" . The Quarterly Review of Biology . 62 (3): 261– 86. doi :10.1086/415512 . Retrieved 29 August 2025 . ↑ Zambonelli, Alessandra; Ori, Francesca; Hall, Ian (2017). "Mycophagy and spore dispersal by vertebrates" . In Dighton, John; White, James F. (eds.). The fungal community: its organization and role in the ecosystem (fourth ed.). Boca Raton, Florida: CRC Press . pp. 347– 58. ISBN 978-1315119496 . Retrieved 1 September 2025 . ↑ Vašutová, Martina; Mleczko, Piotr; López-García, Alvaro; Maček, Irena; Boros, Gergely; Ševčík, Jan; Fujii, Saori; Hackenberger, Davorka; Tuf, Ivan H.; Hornung, Elisabeth; Páll-Gergely, Barna; Kjøller, Rasmus (10 July 2019). "Taxi drivers: the role of animals in transporting mycorrhizal fungi" . Mycorrhiza . 29 (2): 413– 34. doi :10.1007/s00572-019-00906-1 . Retrieved 2 September 2025 . ↑ Gómez-García, Daniel; Giannoni, Stella M.; Reiné, Ramón; Borghi, Carlos E. (1999). "Movement of seeds by the burrowing activity of mole-voles on disturbed soil mounds in the Spanish Pyrenees" . Arctic, Antarctic, and Alpine Research . 31 (4): 407– 11. doi :10.1080/15230430.1999.12003325 . Retrieved 2 September 2025 . ↑ Martinez-Rica, Juan P.; Borghi, Carlos E.; Giannoni, Stella M. (1991). "Reserch on bioturbation in the Spanish mountains" . In Sala, María; Rubio, José L.; García-Ruiz, José M. (eds.). Soil erosion studies in Spain . Logroño, Spain: Geoforma Ediciones. pp. 165– 80. ISBN 84-87779-04-2 . Retrieved 2 September 2025 . ↑ Huntly, Nancy; Reichman, O. Jim (18 November 1994). "Effects of subterranean mammalian herbivores on vegetation" . Journal of Mammalogy . 75 (4): 852– 9. doi :10.2307/1382467 . Retrieved 1 September 2025 . ↑ Rengifo-Faiffer, M. Cristina; Arana, Cesar (October 2019). "Fossorial birds help shape the plant community of a Peruvian desert" . Journal of Arid Environments . 169 : 29– 33. doi :10.1016/j.jaridenv.2019.104011 . Retrieved 2 September 2025 . ↑ Kinlaw, Alton; Grasmueck, Mark (1 July 2012). "Evidence for and geomorphologic consequences of a reptilian ecosystem engineer: the burrowing cascade initiated by the gopher tortoise" . Geomorphology . 157– 158 (4): 108– 21. doi :10.1016/j.geomorph.2011.06.030 . Retrieved 2 September 2025 . ↑ Martin, José; García, Ernesto Raya; Ortega, Jesús; López, Pilar (19 August 2020). "How to maintain underground social relationships? Chemosensory sex, partner and self recognition in a fossorial amphisbaenian" . Plos One . 15 (8) e0237188. doi : 10.1371/journal.pone.0237188 . ↑ Noonan, Michael J.; Newman, Chris; Buesching, Christina D.; Macdonald, David W. (13 October 2015). "Evolution and function of fossoriality in the Carnivora: implications for group-living" . Frontiers in Ecology and Evolution . 3 : 1– 14. doi : 10.3389/fevo.2015.00116 . ↑ Morinaga, Gen; Bergmann, Philip J. (18 March 2020). "Evolution of fossorial locomotion in the transition from tetrapod to snake-like in lizards" . Proceedings of the Royal Society B . 287 20200192. doi :10.1098/rspb.2020.0192 . Retrieved 2 September 2025 . ↑ Cyriac, Vivek Philip; Kodandaramaiah, Ullasa (1 April 2018). "Digging their own macroevolutionary grave: fossoriality as an evolutionary dead end in snakes" . Journal of Evolutionary Biology . 31 (4): 587– 98. doi :10.1111/jeb.13248 . Retrieved 2 September 2025 . ↑ Cudjoe, Anthony Richmond (23 May 2016). "Vertebrate pests of cassava in Africa and their control" . African Crop Science Journal . 2 (4): 497– 503. Retrieved 2 September 2025 . ↑ Eldridge, David J.; James, Alex I. (May 2009). "Soil-disturbance by native animals plays a critical role in maintaining healthy Australian landscapes" . Ecological Management and Restoration . 10 (S1): 27– 34. doi :10.1111/j.1442-8903.2009.00452.x . Retrieved 2 September 2025 . ↑ James, Alex I.; Eldridge, David J. (September 2007). "Reintroduction of fossorial native mammals and potential impacts on ecosystem processes in an Australian desert landscape" . Biological Conservation . 138 (3– 4): 351– 9. doi :10.1016/j.biocon.2007.04.029 . Retrieved 2 September 2025 . This page is based on this
Wikipedia article Text is available under the
CC BY-SA 4.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.