Von Neumann cardinal assignment

Last updated

The von Neumann cardinal assignment is a cardinal assignment that uses ordinal numbers. For a well-orderable set U, we define its cardinal number to be the smallest ordinal number equinumerous to U, using the von Neumann definition of an ordinal number. More precisely:

Contents

where ON is the class of ordinals. This ordinal is also called the initial ordinal of the cardinal.

That such an ordinal exists and is unique is guaranteed by the fact that U is well-orderable and that the class of ordinals is well-ordered, using the axiom of replacement. With the full axiom of choice, every set is well-orderable, so every set has a cardinal; we order the cardinals using the inherited ordering from the ordinal numbers. This is readily found to coincide with the ordering via ≤c. This is a well-ordering of cardinal numbers.

Initial ordinal of a cardinal

Each ordinal has an associated cardinal, its cardinality, obtained by simply forgetting the order. Any well-ordered set having that ordinal as its order type has the same cardinality. The smallest ordinal having a given cardinal as its cardinality is called the initial ordinal of that cardinal. Every finite ordinal (natural number) is initial, but most infinite ordinals are not initial. The axiom of choice is equivalent to the statement that every set can be well-ordered, i.e. that every cardinal has an initial ordinal. In this case, it is traditional to identify the cardinal number with its initial ordinal, and we say that the initial ordinal is a cardinal.

The -th infinite initial ordinal is written . Its cardinality is written (the -th aleph number). For example, the cardinality of is , which is also the cardinality of , , and (all are countable ordinals). So we identify with , except that the notation is used for writing cardinals, and for writing ordinals. This is important because arithmetic on cardinals is different from arithmetic on ordinals, for example  =  whereas  > . Also, is the smallest uncountable ordinal (to see that it exists, consider the set of equivalence classes of well-orderings of the natural numbers; each such well-ordering defines a countable ordinal, and is the order type of that set), is the smallest ordinal whose cardinality is greater than , and so on, and is the limit of for natural numbers (any limit of cardinals is a cardinal, so this limit is indeed the first cardinal after all the ).

Infinite initial ordinals are limit ordinals. Using ordinal arithmetic, implies , and 1 ≤ α < ωβ implies α·ωβ = ωβ, and 2 ≤ α < ωβ implies αωβ = ωβ. Using the Veblen hierarchy, β ≠ 0 and α < ωβ imply and Γωβ = ωβ. Indeed, one can go far beyond this. So as an ordinal, an infinite initial ordinal is an extremely strong kind of limit.

See also

Related Research Articles

In mathematics, the continuum hypothesis is a hypothesis about the possible sizes of infinite sets. It states:

There is no set whose cardinality is strictly between that of the integers and the real numbers.

Cardinal number Size of a possibly infinite set

In mathematics, cardinal numbers, or cardinals for short, are a generalization of the natural numbers used to measure the cardinality (size) of sets. The cardinality of a finite set is a natural number: the number of elements in the set. The transfinite cardinal numbers, often denoted using the Hebrew symbol (aleph) followed by a subscript, describe the sizes of infinite sets.

In mathematics, especially in order theory, the cofinality cf(A) of a partially ordered set A is the least of the cardinalities of the cofinal subsets of A.

In mathematics, transfinite numbers are numbers that are "infinite" in the sense that they are larger than all finite numbers, yet not necessarily absolutely infinite. These include the transfinite cardinals, which are cardinal numbers used to quantify the size of infinite sets, and the transfinite ordinals, which are ordinal numbers used to provide an ordering of infinite sets. The term transfinite was coined by Georg Cantor in 1895, who wished to avoid some of the implications of the word infinite in connection with these objects, which were, nevertheless, not finite. Few contemporary writers share these qualms; it is now accepted usage to refer to transfinite cardinals and ordinals as infinite numbers. Nevertheless, the term "transfinite" also remains in use.

In set theory, an uncountable cardinal is inaccessible if it cannot be obtained from smaller cardinals by the usual operations of cardinal arithmetic. More precisely, a cardinal κ is strongly inaccessible if it is uncountable, it is not a sum of fewer than κ cardinals smaller than κ, and implies .

Aleph number Infinite cardinal number

In mathematics, particularly in set theory, the aleph numbers are a sequence of numbers used to represent the cardinality of infinite sets that can be well-ordered. They were introduced by the mathematician Georg Cantor and are named after the symbol he used to denote them, the Hebrew letter aleph.

In mathematics, in set theory, the constructible universe, denoted by L, is a particular class of sets that can be described entirely in terms of simpler sets. L is the union of the constructible hierarchyLα. It was introduced by Kurt Gödel in his 1938 paper "The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis". In this paper, he proved that the constructible universe is an inner model of ZF set theory, and also that the axiom of choice and the generalized continuum hypothesis are true in the constructible universe. This shows that both propositions are consistent with the basic axioms of set theory, if ZF itself is consistent. Since many other theorems only hold in systems in which one or both of the propositions is true, their consistency is an important result.

In mathematics, limit cardinals are certain cardinal numbers. A cardinal number λ is a weak limit cardinal if λ is neither a successor cardinal nor zero. This means that one cannot "reach" λ from another cardinal by repeated successor operations. These cardinals are sometimes called simply "limit cardinals" when the context is clear.

In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that is a regular cardinal if and only if every unbounded subset has cardinality . Infinite well-ordered cardinals that are not regular are called singular cardinals. Finite cardinal numbers are typically not called regular or singular.

In set theory, one can define a successor operation on cardinal numbers in a similar way to the successor operation on the ordinal numbers. The cardinal successor coincides with the ordinal successor for finite cardinals, but in the infinite case they diverge because every infinite ordinal and its successor have the same cardinality. Using the von Neumann cardinal assignment and the axiom of choice (AC), this successor operation is easy to define: for a cardinal number κ we have

In mathematics, particularly in set theory, the beth numbers are a certain sequence of infinite cardinal numbers, conventionally written , where is the second Hebrew letter (beth). The beth numbers are related to the aleph numbers, but unless the generalized continuum hypothesis is true, there are numbers indexed by that are not indexed by .

In the mathematical field of set theory, ordinal arithmetic describes the three usual operations on ordinal numbers: addition, multiplication, and exponentiation. Each can be defined in essentially two different ways: either by constructing an explicit well-ordered set that represents the result of the operation or by using transfinite recursion. Cantor normal form provides a standardized way of writing ordinals. In addition to these usual ordinal operations, there are also the "natural" arithmetic of ordinals and the nimber operations.

In mathematics, the epsilon numbers are a collection of transfinite numbers whose defining property is that they are fixed points of an exponential map. Consequently, they are not reachable from 0 via a finite series of applications of the chosen exponential map and of "weaker" operations like addition and multiplication. The original epsilon numbers were introduced by Georg Cantor in the context of ordinal arithmetic; they are the ordinal numbers ε that satisfy the equation

In the mathematical discipline of set theory, there are many ways of describing specific countable ordinals. The smallest ones can be usefully and non-circularly expressed in terms of their Cantor normal forms. Beyond that, many ordinals of relevance to proof theory still have computable ordinal notations. However, it is not possible to decide effectively whether a given putative ordinal notation is a notation or not ; various more-concrete ways of defining ordinals that definitely have notations are available.

Axiom of limitation of size

In set theory, the axiom of limitation of size was proposed by John von Neumann in his 1925 axiom system for sets and classes. It formalizes the limitation of size principle, which avoids the paradoxes encountered in earlier formulations of set theory by recognizing that some classes are too big to be sets. Von Neumann realized that the paradoxes are caused by permitting these big classes to be members of a class. A class that is a member of a class is a set; a class that is not a set is a proper class. Every class is a subclass of V, the class of all sets. The axiom of limitation of size says that a class is a set if and only if it is smaller than V—that is, there is no function mapping it onto V. Usually, this axiom is stated in the equivalent form: A class is a proper class if and only if there is a function that maps it onto V.

In set theory, a branch of mathematics, an additively indecomposable ordinalα is any ordinal number that is not 0 such that for any , we have Additively indecomposable ordinals are also called gamma numbers or additive principal numbers. The additively indecomposable ordinals are precisely those ordinals of the form for some ordinal .

In mathematics, the first uncountable ordinal, traditionally denoted by or sometimes by , is the smallest ordinal number that, considered as a set, is uncountable. It is the supremum of all countable ordinals. When considered as a set, the elements of are the countable ordinals, of which there are uncountably many.

Ordinal number Generalization of "n-th" to infinite cases

In set theory, an ordinal number, or ordinal, is a generalization of ordinal numerals aimed to extend enumeration to infinite sets.

This is a glossary of set theory.

References