11-Ketoandrosterone

Last updated

Contents

11-Ketoandrosterone
11-Ketoandrosterone.svg
Names
IUPAC name
3α-Hydroxy-5α-androstane-11,17-dione
Systematic IUPAC name
(3aS,3bS,5aS,7R,9aS,9bS,11aS)-7-Hydroxy-9a,11a-dimethyltetradecahydro-1H-cyclopenta[a]phenanthrene-1,10(2H)-dione
Other names
11-Oxoandrosterone
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
UNII
  • InChI=1S/C19H28O3/c1-18-8-7-12(20)9-11(18)3-4-13-14-5-6-16(22)19(14,2)10-15(21)17(13)18/h11-14,17,20H,3-10H2,1-2H3/t11-,12+,13-,14-,17+,18-,19-/m0/s1
  • C[C@]12CC(=O)[C@H]3[C@@H](CC[C@H]4C[C@H](O)CC[C@]34C)[C@@H]1CCC2=O
Properties
C19H28O3
Molar mass 304.430 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

11-Ketoandrosterone is an endogenous steroid. [1] [2]

Function

11-Ketoandrosterone is an androgen. [3] Androgens are sex hormones that stimulate or control the development and maintenance of male characteristics in vertebrates by binding to androgen receptors. However, the potency of 11-ketoandrosterone as an agonist of androgen receptors was not known as of 2020.

Structure

11-Ketoandrosterone is a 11-keto form and a metabolite of androsterone. [4]

11-Ketoandrosterone belongs to a group of 11-oxyandrogens, i.e. 11-oxygenated (oxygen atom on C11 position forms a ketone group) 19-carbon steroids. 11-oxyandrogens are potent and clinically relevant agonists of the androgen receptors. [5] Potency of 11-ketotestosterone, an 11-oxyandrogen, is similar to that of testosterone. [6] 11-ketotestosterone, derived from 11β-hydroxyandrostenedione, may serve as the main androgen for healthy women. [7]

Clinical relevance

11-Ketoandrosterone is a metabolite that may be biosynthesized within the androgen backdoor pathway, [4] a metabolic pathway for androgen synthesis that bypasses testosterone as an intermediate product. [8] [1] [2]

SRD5A2 catalyzes the 5α-reduction of 11-ketotestosterone that terminates at 11-ketoandrosterone, but only causes a small amount of 11-ketotestosterone inactivation. However, since the metabolism of the glucocorticoid cortisol also produces 11-ketocholosterone, 11-ketoandrosterone may be considered as a more specific urinary marker for the production of 11-ketotestosterone. [7]

See also

References

  1. 1 2 van Rooyen D, Gent R, Barnard L, Swart AC (April 2018). "The in vitro metabolism of 11β-hydroxyprogesterone and 11-ketoprogesterone to 11-ketodihydrotestosterone in the backdoor pathway". The Journal of Steroid Biochemistry and Molecular Biology. 178: 203–212. doi:10.1016/j.jsbmb.2017.12.014. PMID   29277707. S2CID   3700135.
  2. 1 2 van Rooyen D, Yadav R, Scott EE, Swart AC (May 2020). "CYP17A1 exhibits 17αhydroxylase/17,20-lyase activity towards 11β-hydroxyprogesterone and 11-ketoprogesterone metabolites in the C11-oxy backdoor pathway". The Journal of Steroid Biochemistry and Molecular Biology. 199 105614. doi:10.1016/j.jsbmb.2020.105614. PMID   32007561. S2CID   210955834.
  3. "CHEBI:34134 - 11-Ketoandrosterone". Archived from the original on 24 October 2020. Retrieved 22 October 2020.
  4. 1 2 Masiutin MM, Yadav MK (3 April 2023). "Alternative androgen pathways" (PDF). WikiJournal of Medicine. 10: 29. doi: 10.15347/WJM/2023.003 . S2CID   257943362. Creative Commons by small.svg  This article incorporates textfrom this source, which is available under the CC BY 4.0 license.
  5. Turcu AF, Nanba AT, Auchus RJ (2018). "The Rise, Fall, and Resurrection of 11-Oxygenated Androgens in Human Physiology and Disease". Hormone Research in Paediatrics. 89 (5): 284–291. doi:10.1159/000486036. PMC   6031471 . PMID   29742491.
  6. Turcu AF, Rege J, Auchus RJ, Rainey WE (May 2020). "11-Oxygenated androgens in health and disease". Nature Reviews. Endocrinology. 16 (5): 284–296. doi:10.1038/s41574-020-0336-x. PMC   7881526 . PMID   32203405. S2CID   212732699.
  7. 1 2 Barnard L, Nikolaou N, Louw C, Schiffer L, Gibson H, Gilligan LC, Gangitano E, Snoep J, Arlt W, Tomlinson JW, Storbeck KH (September 2020). "The A-ring reduction of 11-ketotestosterone is efficiently catalysed by AKR1D1 and SRD5A2 but not SRD5A1". The Journal of Steroid Biochemistry and Molecular Biology. 202 105724. doi: 10.1016/j.jsbmb.2020.105724 . hdl: 11573/1490727 . PMID   32629108.
  8. Auchus RJ (November 2004). "The backdoor pathway to dihydrotestosterone". Trends in Endocrinology and Metabolism. 15 (9): 432–8. doi:10.1016/j.tem.2004.09.004. PMID   15519890. S2CID   10631647.