Acyl-phosphate—hexose phosphotransferase

Last updated
acyl-phosphate-hexose phosphotransferase
Identifiers
EC no. 2.7.1.61
CAS no. 37278-06-1
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an acyl-phosphate-hexose phosphotransferase (EC 2.7.1.61) is an enzyme that catalyzes the chemical reaction

acyl phosphate + D-hexose an acid + D-hexose phosphate

Thus, the two substrates of this enzyme are acyl phosphate and D-hexose, whereas its two products are acid and D-hexose phosphate.

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is acyl-phosphate:D-hexose phosphotransferase. This enzyme is also called hexose phosphate:hexose phosphotransferase.

Related Research Articles

<span class="mw-page-title-main">Phosphorylation</span> Chemical process of introducing a phosphate

In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.

<span class="mw-page-title-main">Hexokinase</span> Class of enzymes

A hexokinase is an enzyme that irreversibly phosphorylates hexoses, forming hexose phosphate. In most organisms, glucose is the most important substrate for hexokinases, and glucose-6-phosphate is the most important product. Hexokinase possesses the ability to transfer an inorganic phosphate group from ATP to a substrate.

<span class="mw-page-title-main">Mannose</span> Chemical compound

Mannose is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylation are associated with mutations in enzymes involved in mannose metabolism.

<span class="mw-page-title-main">Transferase</span> Class of enzymes which transfer functional groups between molecules

In biochemistry, a transferase is any one of a class of enzymes that catalyse the transfer of specific functional groups from one molecule to another. They are involved in hundreds of different biochemical pathways throughout biology, and are integral to some of life's most important processes.

<span class="mw-page-title-main">Plasmalogen</span> Subclass of Glycerophospholipids

Glycerophospholipids of biochemical relevance are divided into three subclasses based on the substitution present at the sn-1 position of the glycerol backbone: acyl, alkyl and alkenyl. Of these, the alkyl and alkenyl moiety in each case form an ether bond, which makes for two types of ether phospholipids, plasmanyl, and plasmenyl. Plasmalogens are plasmenyls with an ester linked lipid at the sn-2 position of the glycerol backbone, chemically designated 1-0(1Z-alkenyl)-2-acyl-glycerophospholipids. The lipid attached to the vinyl ether at sn-1 can be C16:0, C18:0, or C18:1, and the lipid attached to the acyl group at sn-2 can be C22:6 ω-3 or C20:4 ω-6, . Plasmalogens are classified according to their head group, mainly as PC plasmalogens (plasmenylcholines) and PE plasmalogens (plasmenylethalomines) Plasmalogens should not be confused with plasmanyls.

Alkylglycerone phosphate synthase is an enzyme associated with Type 3 Rhizomelic chondrodysplasia punctata. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">Long-chain-fatty-acid—CoA ligase</span> Class of enzymes

The long chain fatty acyl-CoA ligase is an enzyme of the ligase family that activates the oxidation of complex fatty acids. Long chain fatty acyl-CoA synthetase catalyzes the formation of fatty acyl-CoA by a two-step process proceeding through an adenylated intermediate. The enzyme catalyzes the following reaction,

In enzymology, an aminoacylase (EC 3.5.1.14) is an enzyme that catalyzes the chemical reaction

In enzymology, a 1-acylglycerol-3-phosphate O-acyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acylneuraminate-9-phosphate synthase (EC 2.5.1.57) is an enzyme that catalyzes the chemical reaction

In enzymology, an acylglycerol kinase is an enzyme that catalyzes the chemical reaction

In enzymology, an ADP—thymidine kinase is an enzyme that catalyzes the chemical reaction

In enzymology, an AMP—thymidine kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acylmannosamine kinase</span>

In enzymology, a N-acylmannosamine kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a nucleoside-triphosphate-aldose-1-phosphate nucleotidyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a phosphoramidate-hexose phosphotransferase (EC 2.7.1.62) is an enzyme that catalyzes the chemical reaction

In enzymology, a polyphosphate kinase, or polyphosphate polymerase, is an enzyme that catalyzes the formation of polyphosphate from ATP, with chain lengths of up to a thousand or more orthophosphate moieties.

In enzymology, a protein-Npi-phosphohistidine-sugar phosphotransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UTP—hexose-1-phosphate uridylyltransferase</span> Class of enzymes

In enzymology, an UTP—hexose-1-phosphate uridylyltransferase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">H6PD</span> Protein-coding gene in the species Homo sapiens

GDH/6PGL endoplasmic bifunctional protein is a protein that in humans is encoded by the H6PD gene.

References