Alizarin Red S

Last updated
Alizarin Red S
Alizarin Red S.png
Names
IUPAC name
3,4-Dihydroxy-9,10-dioxo-9,10-dihydroanthracene-2-sulfonic acid
Other names
  • Mordant Red 3
  • C.I 58005
  • Sodium alizarinesulfonate
  • Alizarine S
  • Alizarine sulfonate
  • Alizarin Red, water-soluble
  • Alizarin Carmine
  • Alizarin sodium monosulfonate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.004.530 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 204-981-8
PubChem CID
UNII
  • [Na+].Oc1c(O)c2C(=O)c3ccccc3C(=O)c2cc1S([O-])(=O)=O
Properties
C14H7NaO7S
Molar mass 342.253 g/mol
Appearanceyellow-orange powder
Soluble in water and ethanol
Hazards
Safety data sheet (SDS)
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Alizarin Red S (also known as C.I. Mordant Red 3, Alizarin Carmine, and C.I 58005. [1] ) is a water-soluble sodium salt of Alizarin sulfonic acid with a chemical formula of C
14
H
7
NaO
7
S
. [2] [1] Alizarin Red S was discovered by Graebe and Libermann in 1871. [2] In the field of histology alizarin Red S is used to stain calcium deposits in tissues, [3] [4] and in geology to stain and differentiate carbonate minerals. [3]

Contents

Uses

Alizarin Red S, as sold for use as a histologic stain. Alizarin Red S powder in boat.jpg
Alizarin Red S, as sold for use as a histologic stain.

Alizarin Red S is used in histology and histopathology to stain, or locate calcium deposits in tissues. [1] [3] [4] In the presence of calcium, Alizarin Red S, binds to the calcium to form a Lake pigment that is orange to red in color. [4] Whole specimens can be stained with Alizarin Red S to show the distribution of bone, especially in developing embryos. [4] In living corals alizarin Red S has been used to mark daily growth layers. [5]

In geology, Alizarin Red S is used on Thin sections, and polished surfaces to help identify carbonate minerals which stain at different rates. [6]

See also

Related Research Articles

<span class="mw-page-title-main">Calcite</span> Calcium carbonate mineral

Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate (CaCO3). It is a very common mineral, particularly as a component of limestone. Calcite defines hardness 3 on the Mohs scale of mineral hardness, based on scratch hardness comparison. Large calcite crystals are used in optical equipment, and limestone composed mostly of calcite has numerous uses.

<span class="mw-page-title-main">Haematoxylin</span> Natural stain derived from hearthwood and used in histology

Haematoxylin or hematoxylin, also called natural black 1 or C.I. 75290, is a compound extracted from heartwood of the logwood tree with a chemical formula of C
16
H
14
O
6
. This naturally derived dye has been used as a histologic stain, as an ink and as a dye in the textile and leather industry. As a dye, haematoxylin has been called palo de Campeche, logwood extract, bluewood and blackwood. In histology, haematoxylin staining is commonly followed by counterstaining with eosin. When paired, this staining procedure is known as H&E staining and is one of the most commonly used combinations in histology. In addition to its use in the H&E stain, haematoxylin is also a component of the Papanicolaou stain which is widely used in the study of cytology specimens.

<span class="mw-page-title-main">Eosin</span> Group of bromo derivatives of fluorescein used as red dye

Eosin is the name of several fluorescent acidic compounds which bind to and form salts with basic, or eosinophilic, compounds like proteins containing amino acid residues such as arginine and lysine, and stains them dark red or pink as a result of the actions of bromine on eosin. In addition to staining proteins in the cytoplasm, it can be used to stain collagen and muscle fibers for examination under the microscope. Structures that stain readily with eosin are termed eosinophilic. In the field of histology, Eosin Y is the form of eosin used most often as a histologic stain.

<span class="mw-page-title-main">Aragonite</span> Calcium carbonate mineral

Aragonite is a carbonate mineral and one of the three most common naturally occurring crystal forms of calcium carbonate, the others being calcite and vaterite. It is formed by biological and physical processes, including precipitation from marine and freshwater environments.

<span class="mw-page-title-main">Alizarin</span> Chemical compound and histologic stain

Alizarin is an organic compound with formula C
14
H
8
O
4
that has been used throughout history as a prominent red dye, principally for dyeing textile fabrics. Historically it was derived from the roots of plants of the madder genus. In 1869, it became the first natural dye to be produced synthetically.

Carmine – also called cochineal, cochineal extract, crimson lake, or carmine lake – is a pigment of a bright-red color obtained from the aluminium complex derived from carminic acid. Specific code names for the pigment include natural red 4, C.I. 75470, or E120. Carmine is also a general term for a particularly deep-red color.

<span class="mw-page-title-main">Speleothem</span> Structure formed in a cave by the deposition of minerals from water

A speleothem is a geological formation by mineral deposits that accumulate over time in natural caves. Speleothems most commonly form in calcareous caves due to carbonate dissolution reactions. They can take a variety of forms, depending on their depositional history and environment. Their chemical composition, gradual growth, and preservation in caves make them useful paleoclimatic proxies.

<span class="mw-page-title-main">Staining</span> Technique used to enhance visual contrast of specimens observed under a microscope

Staining is a technique used to enhance contrast in samples, generally at the microscopic level. Stains and dyes are frequently used in histology, in cytology, and in the medical fields of histopathology, hematology, and cytopathology that focus on the study and diagnoses of diseases at the microscopic level. Stains may be used to define biological tissues, cell populations, or organelles within individual cells.

<span class="mw-page-title-main">Dolomite (rock)</span> Sedimentary carbonate rock that contains a high percentage of the mineral dolomite

Dolomite (also known as dolomite rock, dolostone or dolomitic rock) is a sedimentary carbonate rock that contains a high percentage of the mineral dolomite, CaMg(CO3)2. It occurs widely, often in association with limestone and evaporites, though it is less abundant than limestone and rare in Cenozoic rock beds (beds less than about 66 million years in age). The first geologist to distinguish dolomite from limestone was Déodat Gratet de Dolomieu; a French mineralogist and geologist whom it is named after. He recognized and described the distinct characteristics of dolomite in the late 18th century, differentiating it from limestone.

<span class="mw-page-title-main">Carbonate rock</span> Class of sedimentary rock

Carbonate rocks are a class of sedimentary rocks composed primarily of carbonate minerals. The two major types are limestone, which is composed of calcite or aragonite (different crystal forms of CaCO3), and dolomite rock (also known as dolostone), which is composed of mineral dolomite (CaMg(CO3)2). They are usually classified based on texture and grain size. Importantly, carbonate rocks can exist as metamorphic and igneous rocks, too. When recrystallized carbonate rocks are metamorphosed, marble is created. Rare igneous carbonate rocks even exist as intrusive carbonatites and, even rarer, there exists volcanic carbonate lava.

<i>Halimeda</i> Genus of algae

Halimeda is a genus of green macroalgae. The algal body (thallus) is composed of calcified green segments. Calcium carbonate is deposited in its tissues, making it inedible to most herbivores. However one species, Halimeda tuna, was described as pleasant to eat with oil, vinegar, and salt.

<span class="mw-page-title-main">Neutral red</span> Chemical compound

Neutral red is a eurhodin dye used for staining in histology. It stains lysosomes red. It is used as a general stain in histology, as a counterstain in combination with other dyes, and for many staining methods. Together with Janus Green B, it is used to stain embryonal tissues and supravital staining of blood. Can be used for staining Golgi apparatus in cells and Nissl granules in neurons.

<span class="mw-page-title-main">Perls Prussian blue</span> Histologic method to stain for iron

In histology, histopathology, and clinical pathology, Perls Prussian blue is a commonly used method to detect the presence of iron in tissue or cell samples. Perls Prussian Blue derives its name from the German pathologist Max Perls (1843–1881), who described the technique in 1867. The method does not involve the application of a dye, but rather causes the pigment Prussian blue to form directly within the tissue. The method stains mostly iron in the ferric state which includes ferritin and hemosiderin, rather than iron in the ferrous state.

The von Kossa histological stain is used to quantify mineralization in cell culture and histological sections.

<span class="mw-page-title-main">Mineralized tissues</span> Biological tissues incorporating minerals

Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support. Bone, mollusc shells, deep sea sponge Euplectella species, radiolarians, diatoms, antler bone, tendon, cartilage, tooth enamel and dentin are some examples of mineralized tissues.

<span class="mw-page-title-main">Chromoendoscopy</span>

Chromoendoscopy is a medical procedure wherein dyes are instilled into the gastrointestinal tract at the time of visualization with fibre-optic endoscopy. The purposes of chromoendoscopy is chiefly enhance the characterization of tissues, although dyes may be used for other functional purposes. The detail achieved with chromoendoscopy can often allow for identification of the tissue type or pathology based upon the pattern uncovered.

<span class="mw-page-title-main">Amorphous calcium carbonate</span>

Amorphous calcium carbonate (ACC) is the amorphous and least stable polymorph of calcium carbonate. ACC is extremely unstable under normal conditions and is found naturally in taxa as wide-ranging as sea urchins, corals, mollusks, and foraminifera. It is usually found as a monohydrate, holding the chemical formula CaCO3·H2O; however, it can also exist in a dehydrated state, CaCO3. ACC has been known to science for over 100 years when a non-diffraction pattern of calcium carbonate was discovered by Sturcke Herman, exhibiting its poorly-ordered nature.

<span class="mw-page-title-main">Regenerative endodontics</span> Dental specialty

Regenerative endodontic procedures is defined as biologically based procedures designed to replace damaged structures such as dentin, root structures, and cells of the pulp-dentin complex. This new treatment modality aims to promote normal function of the pulp. It has become an alternative to heal apical periodontitis. Regenerative endodontics is the extension of root canal therapy. Conventional root canal therapy cleans and fills the pulp chamber with biologically inert material after destruction of the pulp due to dental caries, congenital deformity or trauma. Regenerative endodontics instead seeks to replace live tissue in the pulp chamber. The ultimate goal of regenerative endodontic procedures is to regenerate the tissues and the normal function of the dentin-pulp complex.

<span class="mw-page-title-main">Marine biogenic calcification</span> Shell formation mechanism

Marine biogenic calcification refers to the production of calcium carbonate by organisms in the global ocean.

<span class="mw-page-title-main">Calcium cycle</span>

The calcium cycle is a transfer of calcium between dissolved and solid phases. There is a continuous supply of calcium ions into waterways from rocks, organisms, and soils. Calcium ions are consumed and removed from aqueous environments as they react to form insoluble structures such as calcium carbonate and calcium silicate, which can deposit to form sediments or the exoskeletons of organisms. Calcium ions can also be utilized biologically, as calcium is essential to biological functions such as the production of bones and teeth or cellular function. The calcium cycle is a common thread between terrestrial, marine, geological, and biological processes. Calcium moves through these different media as it cycles throughout the Earth. The marine calcium cycle is affected by changing atmospheric carbon dioxide due to ocean acidification.

References

  1. 1 2 3 Lillie, Ralph Dougall (1977). H. J. Conn's Biological stains (9th ed.). Baltimore: Williams & Wilkins. pp. 692p.
  2. 1 2 Legan, Lea; Retko, Klara; Ropret, Polonca (2016). "Vibrational spectroscopic study on degradation of alizarin carmine". Microchemical Journal. 127: 36–45. doi:10.1016/j.microc.2016.02.002. ISSN   0026-265X.
  3. 1 2 3 Puchtler, Holde; Meloan, Susan N.; Terry, Mary S. (1969). "On the history and mechanism of alizarin and alizarin red S stains for calcium". Journal of Histochemistry & Cytochemistry. 17 (2): 110–124. doi: 10.1177/17.2.110 . ISSN   0022-1554. PMID   4179464.
  4. 1 2 3 4 Bancroft, John; Stevens, Alan, eds. (1982). The Theory and Practice of Histological Techniques (2nd ed.). Longman Group Limited.
  5. Holcomb, Michael; Cohen, Anne L.; McCorkle, Daniel C. (2013). "An evaluation of staining techniques for marking daily growth in scleractinian corals" (PDF). Journal of Experimental Marine Biology and Ecology. 440: 126–131. doi:10.1016/j.jembe.2012.12.003. hdl: 1912/5857 . ISSN   0022-0981.
  6. Dickson, J. A. D. (1966). "Carbonate identification and genesis as revealed by staining". Journal of Sedimentary Research. 36 (4): 491–505. doi:10.1306/74D714F6-2B21-11D7-8648000102C1865D.