Aurizon electric locomotives

Last updated

Aurizon electric locomotives are used by Australian rail operator Aurizon in Queensland.

Aurizon Holdings Limited is a publicly listed rail freight company in Australia. Formerly owned by the Government of Queensland, its assets were transferred to a new company, QR National Limited, in late 2010 in preparation for it being floated on the Australian Securities Exchange in November 2010. Aurizon is Australia's largest rail freight company.

Queensland North-east state of Australia

Queensland is the second-largest and third-most populous state in the Commonwealth of Australia. Situated in the north-east of the country, it is bordered by the Northern Territory, South Australia and New South Wales to the west, south-west and south respectively. To the east, Queensland is bordered by the Coral Sea and Pacific Ocean. To its north is the Torres Strait, with Papua New Guinea located less than 200 km across it from the mainland. The state is the world's sixth-largest sub-national entity, with an area of 1,852,642 square kilometres (715,309 sq mi).

Contents

Background

Early in 1978, discussions were commenced on possible electrification of the Blackwater and Goonyella coal networks. This was due to an expected increase in coal traffic across the networks, ageing diesel-electric locomotive fleet and the increase in diesel fuel costs. By early 1983, a decision had been made to electrify the networks and by early 1984 contracts were already starting to be let for the new locomotives and other works for the project. The decision was made to electrify with the 25 kV AC railway electrification system as used in the Brisbane suburban network. This would allow future connection of the Brisbane network with the coal networks via the North Coast line.

Railway electrification system electric power to railway trains and trams without an on-board prime mover or local fuel supply

A railway electrification system supplies electric power to railway trains and trams without an on-board prime mover or local fuel supply. Electric railways use electric locomotives to haul passengers or freight in separate cars or electric multiple units, passenger cars with their own motors. Electricity is typically generated in large and relatively efficient generating stations, transmitted to the railway network and distributed to the trains. Some electric railways have their own dedicated generating stations and transmission lines but most purchase power from an electric utility. The railway usually provides its own distribution lines, switches and transformers.

Blackwater, Queensland Town in Queensland, Australia

Blackwater is both a town and a locality in the Central Highlands Region, Queensland, Australia, 190 km west of Rockhampton. It is a town in a significant coal mining area in Central Queensland. The name of the township was inspired by the dark colour of local waterholes.

Goonyella railway line

The Goonyella railway system is located in Central Queensland, Australia. It services the coal mining area of the Bowen Basin, carrying coal to the Hay Point and Dalrymple Bay Coal Terminals 20 km southeast of Mackay, as well as products to other destinations by way of connections to the North Coast Line at Yukan and the Central Line at Burngrove via the Gregory coal mine branch. It is also connected to the coal loading terminal at Abbot Point by the GAP line.

Electrification project

The project was to be carried out in four stages: [1]

Stage 1

Electrification of the main line from Gladstone to Rockhampton, including parts of Rockhampton marshalling yard, then west to Blackwater and the coal mines in the area. This was a total of 720 kilometres of track.

Gladstone, Queensland City in Queensland, Australia

Gladstone is a city in the Gladstone Region, Queensland, Australia. It is approximately 550 km (340 mi) by road north of Brisbane and 100 km (62 mi) south-east of Rockhampton. Situated between the Calliope and Boyne Rivers, Gladstone is home to Queensland's largest multi-commodity shipping port.

Stage 2

Electrification of the coal lines south of Dalrymple Bay and Hay Point, then west through the Goonyella system, south-west to Blair Athol and south to Gregory – linking the Goonyella system to the Blackwater system. This was a total of 773 kilometres of track.

Blair Athol coal mine mine in Australia

The Blair Athol Coal Mine is a coal mine located in the Bowen Basin of Central Queensland, Australia. It is located over the former site of the township of Blair Athol. The mine has coal reserves amounting to 195 million tonnes of coking coal, one of the largest coal reserves in Asia and the world. The mine has an annual production capacity of 12.9 million tonnes of coal.

The Gregory Coal Mine is an open-cut coal mine located at Crinum, 60 km north east of Emerald in the Central Queensland, Australia. The mine has coal reserves amounting to 159 million tonnes of coking coal, one of the largest coal reserves in Asia and the world. The Bowen Basin mine has an annual production capacity of 5 million tonnes of coal. Operations at the Gregory mine started in 1979. Coal from the mine is exported to the Port of Gladstone via the Blackwater railway system.

Stage 3

Electrification of the main western line from Burngrove to Emerald. This would allow electric freight from Rockhampton to Emerald.

Emerald, Queensland Town in Queensland, Australia

Emerald is a town in the Central Highlands Region, Queensland, Australia. At the 2016 Census, Emerald had an urban population of approximately 13,500. The town is the business centre for the Central Highlands Regional Council.

Stage 4

Electrification of the line from Newlands coal mine to Collinsville and north-east to Abbott Point. This stage never went ahead. In 1986 it was decided to electrify the North Coast line between Brisbane and Gladstone instead and this became known as Stage 4. [2] [3]

Locomotive contracts

In July 1984 Comeng were awarded a contract for 76 3100/3200 class locomotives. and a Clyde Engineering/ASEA-Walkers Limited joint venture, a contract for 70 3500/3600 class locomotives.

3100/3200 Class

3102 & 3255 on the Goonyella line in 1991 QR electric locos 3102 & 3255 on the Goonyella line ~1991.jpg
3102 & 3255 on the Goonyella line in 1991
Three 32 class locomotives and the Locotrol wagon situated mid-train on a loaded coal train on the Goonyella line in 1991 QR electric loco 3210, 2 others and the Locotrol wagon situated mid-train on a loaded coal train, Goonyella line.jpg
Three 32 class locomotives and the Locotrol wagon situated mid-train on a loaded coal train on the Goonyella line in 1991
3136 in Bicentennial livery on the Goonyella line in 1991 QR electric loco 3136 (in Bicentennial paint scheme) on the Goonyella line, ~1991.jpg
3136 in Bicentennial livery on the Goonyella line in 1991

Comeng built two classes of locomotive, the 3100 class were fitted with radio equipment to remotely control other locomotives unlike the 3200 class.

Design of the electrical equipment was by General Electric and Hitachi, with the bodies being built and assembled at Comeng's Brisbane factory. [4] [5]

The first locomotive, 3101 Sir Joh Bjelke-Peterson , was delivered on 26 May 1986. [6]

This locomotive underwent extensive testing in the Brisbane area before heading north to the Gladstone area for further testing in conjunction with 3500/3600 class locomotives.

Bodies

Bodies of these locomotives differed from QR's diesel-electric locomotives which have only one driving cab whereas the electric had driver cab at each end. Each locomotive had an internal walkway connecting each cab. Bodies were the full width with no external walkway. The colour scheme was orange on either end, predominately white sides and green trim.

Bogies

Bogies for the new locomotives were of Bo-Bo-Bo wheel arrangement. This differed from the diesel-electrics of the day which had Co-Co wheel arrangement. This three bogie, two axle, arrangement gave better weight distribution of the much heavier locomotives as well as better tractive effort and wheel flange wear.

Traction motors

Traction for the locomotives is from six DC traction motors. Each motor is axle mounted. Power for the traction motors comes from the 25 kV overhead line via the roof mounted pantograph through a step down transformer and through the power control equipment to the traction motors. After the stepping down of the voltage the AC power is converted to DC by a bridge rectifier for use by the traction motors. The power for each motor is rated at 500 kW whereas those of QR's most powerful diesel-electric locomotives were only rated at 275 kW.

Control gear

Control of the locomotives made extensive use of silicon chip technology. Although some relays were used in the locomotives, extensive use of microprocessor technology was made. One of the stipulations for both contractors was that all locomotives from each contractor must be able to be used in any configuration. This meant that 3100/3200 class locomotives could be on the same train as 3500/3600 class locomotives.

Brakes

The 3100/3200 class were fitted with Davies & Metcalfe's P85 brake system. The locomotives are also fitted with Cutler-Hammer dynamic braking system.

Facilities for train crew

There were several improvements over the old diesel locomotives for driver comforts. These included on board toilets, equipment for traincrew preparing a hot meal whilst on board and air-conditioning for improved driver comfort.

3500/3600 Class

3508 and another haul an eastbound coal train on the Blackwater line in 1993. QR electric loco 3508 and another haul an eastbound coal train on the Blackwater line ~1993.jpg
3508 and another haul an eastbound coal train on the Blackwater line in 1993.
3524 in November 2008. QR 3524.jpg
3524 in November 2008.

Walkers Limited built two classes of locomotive: the 3500 class were fitted with radio equipment to remotely control other locomotives unlike the other type, the 3600 class.

The first locomotive, 3501 DF Lane , was delivered on 29 May 1986. [7]

This locomotive underwent extensive testing in the Brisbane area before heading north to the Gladstone area for further testing in conjunction with 3100/3200 class locomotives. [8]

Bodies

The external side walls were manufactured from high grade stainless steel unlike the 3100 class that were painted steel. The roof hatches on these locomotives were made from aluminium. The overall colour scheme for the 3500 class matched the 3100 class with orange fronts, green side trims and high polished stainless steel sides. Body length was 19.38 metres

Bogies

3500 bogies were again a Bo-Bo-Bo wheel arrangement which achieved a higher tractive effort whilst ensuring better weight distribution and less wheel flange wear.

Traction motors

As with the 3100's the traction for the locomotives is from six DC traction motors. Each motor is axle mounted. Power for the traction motors comes from the 25 kV overhead line via the roof mounted pantograph through a step down transformer and through the power control equipment to the traction motors. After the stepping down of the voltage the AC power is converted to DC by a rectifier bridge for use by the traction motors.

Control gear

Control of the locomotives made extensive use of silicon chip technology. Although some relays were used in the locomotives, extensive use of microprocessor technology was made. One of the stipulations for both contractors was that all locomotives from each contractor must be able to be used in any configuration. This meant that 3100/3200 class locomotives could be on the same train as 3500/3600 class locomotives. These locomotives made use of a thyristor control system that had been developed by ASEA for use in their European locomotives.

Brakes

The 3500/3600 class were fitted with Davies & Metcalfe's P85 brake system. The locomotives are also fitted with Cutler-Hammer dynamic braking system.

Facilities for traincrew

There were several improvements over the old diesel locomotives for driver comforts. These included on board toilets, equipment for traincrew preparing a hot meal whilst on board and air-conditioning for improved driver comfort.

3300/3400 Class

In 1994 the Clyde/Hitachi 3300/3400 classes were introduced. These Bo-Bo-Bo locomotives generate 3000 kW (4020HP). The 3300s are command locos while the 3400s are slave/remote locos. [9]

3900 Class

3903 hauling a special train crosses the Nogoa River bridge, east of Emerald in September 1989 Dia 0385.jpg
3903 hauling a special train crosses the Nogoa River bridge, east of Emerald in September 1989

Queensland Rail decided that the last thirty 3600 class locomotives would be used on passenger and general freight work and thus were built with gearing allowing for a higher top end speed as the 3900 class. [10] In 2003 a contract was awarded to Downer EDI to rebuild 18 as the 3550 class for coal line operation. [11]

Because these locomotives were designed for freight and not coal traffic a different gear ratio was used. This enabled higher speeds for the freight traffic.

Refurbishment of existing rolling stock

3550 Class

These locomotives were rebuilt by Downer EDI, Maryborough from 3900 class locomotives for operation on coal lines. [11]

3700 Class

3701 in November 2008 QR 3701.jpg
3701 in November 2008

By the late 1990s discussions were underway to find possible solutions to issue of the ageing electric locomotive fleet.

After considerable consultation with industry leaders and manufactures, it was decided to rebuild the existing fleet as well as buy new locomotives. The 3100/3200 class were to be completely rebuilt from the ground with only the original bodies being used in the new locomotives. [12]

In March 2003, a contract was awarded to Siemens for the rebuilding of three 3200 class locomotives as prototypes for a proposed rebuild of the entire class. [11] [13] The work was undertaken at United Group, Townsville.

Deemed a success, it was decided to rebuild the rest of the class at United Group's Townsville and Broadmeadow factories. The weight and dimensions of the 3100 class meant that they had to have components removed at the Jilalan Depot, Mackay before they could be moved by rail to Townsville. These components were used both for spare parts for the rest of the 3100/3200 class and to allow a reduction in weight to comply with mainline track gauge restrictions.

At Townsville the locomotives were stripped down to the body shell with all internal components removed. The bodies were then sandblasted and any minor defects were repaired. They were rebuilt with only one cab, with the redundant cab enclosed with steel plating.

Bodies were then transported by road to Broadmeadow for rebuilding. There are several major changes to the locomotives. These include now using AC traction motors, distributed power locotrol system instead of Locotrol II, increased weight and increased traction effort.

With the increased tractive effort, the number of locomotives on each train has decreased from five to three locomotives on the Goonyella network. This gives a 60% increase in available locomotives to network operations without increasing the number of locomotives in the fleet.

Purchase of new locomotives

3811 in November 2008. QR 3811.jpg
3811 in November 2008.

3800 class

After consultation with the coal industry it was decided that there was not enough locomotive power available for the expected upturn in the coal industry. As a result, it was decided to purchase more locomotives for use on the Goonyella network. German company Siemens Mobility was awarded a contract for 20 3800 class locomotives. [14] In August 2007, the order was increased to 45. [15] [16] These single ended locomotives were designed and built in Germany.

Related Research Articles

Electric locomotive locomotive powered by electricity

An electric locomotive is a locomotive powered by electricity from overhead lines, a third rail or on-board energy storage such as a battery or a supercapacitor.

Queensland Rail railway operator in Queensland, Australia

Queensland Rail, also known as QR, is a railway operator in Queensland, Australia. Owned by the Queensland Government, it operates suburban and long-distance passenger services, as well as owning and maintaining approximately 6,600 kilometres of track.

3000 class railcar

The 3000/3100 class are a class of diesel railcars operated by the State Transport Authority and its successors in Adelaide. They were built by Comeng and Clyde Engineering between 1987 and 1996.

Rail transport in Queensland

The Queensland rail network, the first in the world to adopt 1,067 mm narrow gauge for a main line, and now the second largest narrow gauge network in the world, consists of:

New South Wales 46 class locomotive

The 46 class was a class of mainline electric locomotive built by Metropolitan-Vickers and its partner Beyer, Peacock and Company in England for the New South Wales Government Railways.

The New South Wales 85 class were a class of 10 electric locomotives built by Comeng, Granville between May 1979 and July 1980 for the Public Transport Commission.

Queensland Railways 1300 class class of 45 Australian Co′Co′ diesel-electric locomotives

The 1300 class were a class of diesel locomotive built by English Electric, Rocklea for Queensland Rail between 1967 and 1972. They were later sold to AN Tasrail.

Downer EDI Rail GT42CU AC model of Australian diesel-electric locomotive

The GT42CU AC is a model of diesel electric locomotives manufactured by EDi Rail, Maryborough between 1999 and 2005 under licence from Electro-Motive Diesel, for use on narrow gauge railways in Queensland.

Blackwater railway system

The Blackwater railway system is located in Central Queensland and services the coal mining area of the Bowen Basin. It carries coal, as well as products, to other destinations by way of connections to the North Coast Line at Rocklands and the Goonyella Line via Gregory coal mine to Oaky Creek. Together with the Moura line the two railway systems are known as the Capricornia Coal Chain.

In the late 1970s and 1980s, a significant rail electrification program was completed in the Australian state of Queensland. The electrified Queensland network is the largest in Australia with over 2,000 kilometres electrified, the next biggest is New South Wales with 640 kilometres, that is served mainly as passenger operations.

Downer EDI Rail GT42CU ACe class of Australian diesel-electric locomotive

The GT42CU ACe is a model of diesel electric locomotives manufactured by EDi Rail, Maryborough between 2007 and 2013 under licence from Electro-Motive Diesel, for use on narrow gauge railways in Queensland, South Australia and Western Australia.

Queensland Railways 3100/3200 class class of 86 Australian electric locomotives

The 3100/3200 class are a class of electric locomotives built by Comeng, Rocklea for Queensland Rail between 1986 and 1989.

The 3300/3400 class are a class of electric locomotives built by Clyde Engineering, Kelso and Somerton for Queensland Rail in 1994-1995.

Queensland Railways 3500/3600 class class of 50 Australian electric locomotives

The 3500/3600 class are a class of electric locomotives built by Walkers Limited, Maryborough for Queensland Rail between 1986 and 1988.

Queensland Railways 3900 class class of 30 Australian electric locomotives

The 3900 class are a class of electric locomotives built by Walkers Limited, Maryborough for Queensland Rail between 1988 and 1990.

Queensland Railways 1270 class class of 30 Australian Co′Co′ diesel-electric locomotives

The 1270 class were a class of diesel locomotive built by English Electric, Rocklea for Queensland Railways between 1964 and 1966.

Queensland Railways 2100 class class of 24 Australian Co′Co′ diesel-electric locomotives

The 2100 class was a class of diesel locomotives built by Clyde Engineering, Eagle Farm for Queensland Railways between 1970 and 1973.

Queensland Railways 2170 class class of 45 Australian Co′Co′ diesel-electric locomotives; EMD model GL26C-2

The Queensland Railways 2170 class is an Australian diesel-electric locomotive.

Queensland Railways 2800 class class of 50 Australian diesel-electric locomotives

The 2800 class are a class of diesel locomotive built by A Goninan & Co, Townsville for Queensland Rail between 1995 and 1998.

References

  1. Queensland Rail (August 1984). "Fact Sheet No.1 August 1984 Everything you should know about Australia's biggest railway project" (1): 1.
  2. RW Dunning & AM Drake (c. 1985). "Mainline Electrification" (1): 3.
  3. Queensland Rail (February 1986). "Fact Sheet No. 9 Main Line Electrification Project Special Edition" (1): 1.
  4. Queensland Rail (June–July 1985). "Fact Sheet No.6 June / July, 1985 The shape of things to come …the new locomotives will be the stars of the system!" (1): 1.
  5. Comeng/Hitachi 3100/3200 Class Queensland's Railways Interests Group
  6. Queensland Rail (May 1986). "Fact Sheet No.11 May 1986 Mainline Electrification Special Locomotive Edition" (1): 1.
  7. Queensland Rail (May 1986). "Fact Sheet No.12 May 1986 Mainline Electrification Special Loco Preview Edition" (1): 1.
  8. Walkers/ABB 3500/3600 Class Queensland's Railways Interest Group
  9. Clyde/Hitachi 3300/3400 Class Queensland's Railways Interest Group
  10. Walkers/ABB 3900 Class Queensland's Railways Interest Group
  11. 1 2 3 QR expands coal business Railway Gazette 1 April 2003
  12. United Group Rail/Siemens 3700 Class Queensland's Railways Interest Group
  13. Siemens wins QR locomotive contract Rail Express 10 March 2003
  14. Another success in Australia: Siemens locomotives for Queensland Rail Siemens 7 April 2006
  15. New electric locomotives for Queensland Rail Logistics & Material Handling 11 October 2007
  16. 3800 Class Railpage