Edmontonia Temporal range: Late Cretaceous, | |
---|---|
![]() | |
Mounted skeleton of E. rugosidens, specimen AMNH 5665 | |
Scientific classification ![]() | |
Domain: | Eukaryota |
Kingdom: | Animalia |
Phylum: | Chordata |
Clade: | Dinosauria |
Clade: | † Ornithischia |
Clade: | † Thyreophora |
Clade: | † Ankylosauria |
Family: | † Nodosauridae |
Subfamily: | † Nodosaurinae |
Clade: | † Panoplosaurini |
Genus: | † Edmontonia Sternberg, 1928 |
Type species | |
†Edmontonia longiceps Sternberg, 1928 | |
Species | |
| |
Synonyms | |
|
Edmontonia is a genus of panoplosaurin nodosaurid dinosaur from the Late Cretaceous Period. It is part of the Nodosauridae, a family within Ankylosauria. It is named after the Edmonton Formation (now the Horseshoe Canyon Formation in Canada), the unit of rock where it was found.
Edmontonia was bulky, broad and tank-like. Its length has been estimated at 6.6 m (22 ft). [1] In 2010, Gregory S. Paul considered both main Edmontonia species, E. longiceps and E. rugosidens, to be equally long at six metres and weigh three tonnes. [2]
Edmontonia had small, oval ridged bony plates on its back and head and many sharp spikes along its sides. The four largest spikes jutted out from the shoulders on each side, the second of which was split into subspines in E. rugosidens specimens. Its skull had a pear-like shape when viewed from above. [1] Its neck and shoulders were protected by three halfrings made of large keeled plates.
In 1990, Kenneth Carpenter established some diagnostic traits for the genus as a whole, mainly comparing it with its close relative Panoplosaurus . In top view, the snout has more parallel sides. The skull armour has a smooth surface. In the palate, the vomer is keeled. The neural arches and neural spines are shorter than those of Panoplosaurus. The sacrum proper consists of three sacral vertebrae. In the shoulder girdle, the scapula and coracoid are not fused. [3]
Carpenter also indicated in which way the main species differed from each other. The type species, Edmontonia longiceps, is distinguished from E. rugosidens in lacking sideways projecting osteoderms behind the eye sockets; having tooth rows that are less divergent; possessing a more narrow palate; having a sacrum that is wider than long and more robust; and in having shorter spikes at the sides. Also, an ossified cheek plate, known from E. rugosidens specimens, has not been found with Edmontonia longiceps. [3]
The skull of Edmontonia, up to half a metre long, is somewhat elongated with a protruding truncated snout. The snout carried a horny upper beak and the front snout bones, the premaxillae, were toothless. The cutting edge of the upper beak continued into the maxillary tooth rows, each containing fourteen to seventeen small teeth. In each dentary of the lower jaws, eighteen to twenty-one teeth were present. In the sides of the snout large depressions were present, "nasal vestibules", that each possessed two smaller openings. The top of these was a horizontal oval and represented the bony external nostril, the entrance to the nasal cavity, the normal air passage. The more rounded second opening below and obliquely in front, was the entrance to a "paranasal" tract, running along the outer side of the nasal cavity, in a somewhat lower position. A study by Matthew Vickaryous in 2006 proved for the first time the presence of multiple openings in a nodosaurid; such structures had already been well established in ankylosaurids. The air tracts are however, much simpler than in the typical ankylosaurid condition, and are not convoluted while lacking bony turbinate bones. The nasal cavity is separated into two halves along the midline by a bone wall. This septum is continued to below by the vomers, which are keeled, the keel featuring a pendulum-shaped appendage. [4] Another similarity with Ankylosauridae is the presence of a secondary bone palate, a possible case of parallel evolution. This has been shown too for Panoplosaurus. [3]
The head armour tiles, or caputegulae, are smooth. Details differ between the various specimens but all share a large central nasal tile on the snout, bend large "loreal" tiles at the rear snout edges and a large central caputegula on the skull roof. The tiles behind the upper eye socket rim in Edmontonia longiceps do not stick out as much as in E. rugosidens, combined with a more narrow, pointed snout in the former. Some E. rugosidens specimens are known that possess a "cheek plate" above the lower jaw. Contrary to that discovered with Panoplosaurus, it is "free-floating", not fused with the lower jaw bone. [5]
The vertebral column contains about eight neck vertebrae, about twelve "free" back vertebrae, a "sacral rod" of four fused rear dorsal vertebrae, three sacral vertebrae, two caudosacrals and at least twenty, but probably about forty, tail vertebrae. In the neck the first two vertebrae, the atlas and axis, are fused. In the shoulder girdle, the coracoid has a rectangular profile, in contrast to the more rounded shape with Panoplosaurus. Two sternal plates are present, connected to sternal ribs. The forelimb is robust but relatively long. In Edmontonia longiceps and E. rugosidens the deltopectoral crest of the humerus is gradually rounded. The metacarpus is robust compared to that of Panoplosaurus. The hand very likely was tetradactyl, having four fingers. [3] The exact number of phalanges is unknown but the formula was by W.P. Coombs suggested to be 2-3-3-4-?. [6]
Apart from the head armour, the body was covered with osteoderms, skin ossifications. The configuration of the armour of Edmontonia is relatively well known, much of it having been discovered in articulation. The neck and shoulder region was protected by three cervical halfrings, each consisting of fused rounded rectangular, asymmetrically keeled, bone plates. These halfrings did not have a continuous underlying bone band. The first and second halfrings each had three pairs of segments. Below each lower end of the second halfring a side spike was present, a separate triangular osteoderm pointing obliquely forward. In the third halfring over the shoulders, the two pairs of central segments are bordered on each side by a very large forward-pointing spike that is bifurcated, featuring a secondary point above the main one. A third large spike behind it points more sideways; a smaller fourth one, often connected to the third at the base, is directed obliquely to behind. The row of side spikes is continued to the rear but there the osteoderms are much lower, curving strongly to behind, with the point overhanging the rear edge. Gilmore had trouble believing that the shoulder spikes really pointed to the front as this would have greatly hampered the animal while moving through vegetation. He suggested that the points had shifted during the burial of the carcass. However, Carpenter and G.S. Paul, trying to reposition the spikes, found that it was impossible to rotate them without losing conformity with the remainder of the armour. The side spikes have solid, not hollow, bases. The spikes differ in size between E. rugosidens individuals; those of the E. longiceps holotype are relatively small. [3]
Behind the third halfring the back and hip are covered by numerous transverse rows of much smaller oval keeled osteoderms. These are not ordered in longitudinal rows. The front rows have plates oriented along the length of the body, but to the rear the long axis of these osteoderms gradually rotates sideways, their keels ultimately running transversely. Rosettes are lacking. The configuration of the tail armour is unknown. The larger plates of all body parts were connected by small ossicles. [3] Such small round scutes also covered the throat. [4]
In 1915, the American Museum of Natural History obtained the nearly complete, articulated front half of an armoured dinosaur, found the same year by Barnum Brown in Alberta, Canada. In 1922, William Diller Matthew referred this specimen, AMNH 5381, to Palaeoscincus in a popular-science article, not indicating any particular species. [7] It had been intended to name a new Palaeoscincus species in cooperation with Brown but their article was never published. [3] Matthew also referred specimen AMNH 5665, the front of a skeleton found by Levi Sternberg in 1917. In 1930 Charles Whitney Gilmore referred both specimens to Palaeoscincus rugosidens. [8] This species was based on type specimen USNM 11868, a skeleton found by George Fryer Sternberg in June 1928. The specific name is derived from Latin rugosus, "rough", and dens, "tooth". In 1940, Loris Shano Russell referred all three specimens to Edmontonia, as an Edmontonia rugosidens. [9]
Meanwhile, the type species of Edmontonia, Edmontonia longiceps, had been named by Charles Mortram Sternberg in 1928. The generic name Edmontonia refers to Edmonton or the Edmonton Formation. The specific name longiceps means "long-headed" in Latin. Its holotype is specimen NMC 8531, consisting of a skull, right lower jaw and much of the postcranial skeleton, including the armour. It was discovered near Morrin in 1924 by George Paterson, the teamster of the expedition led by C.M. Sternberg. [10]
Edmontonia species include:
Edmontonia schlessmani was a renaming in 1992 of Denversaurus schlessmani ("Schlessman's Denver lizard") by Adrian Hunt and Spencer Lucas. [17] This taxon was erected by Bakker in 1988 for a skull from the Late Maastrichtian Upper Cretaceous Lance Formation of South Dakota, specimen DMNH 468 found by Philip Reinheimer in 1922. This type specimen of Denversaurus is in the collections of the Denver Museum of Natural History (now the Denver Museum of Nature and Science), Denver, Colorado for which the genus was named. The specific name honours Lee E. Schlessman, whose Schlessman Family Foundation sponsored the museum. Bakker described the skull as being much wider at the rear than Edmontonia specimens. [5] However, later workers explained this by its being crushed, [3] and considered the taxon a junior synonym of Edmontonia longiceps. [14] The Black Hills Institute has referred a skeleton from the Lance Formation to Denversaurus, nicknamed "Tank". It has the inventory number BHI 127327. [18] New research indicates that it is closely related to Panoplosaurus. [19]
Edmontonia australis was named by Tracy Lee Ford in 2000 on the basis of cervical scutes, the holotype NMMNH P-25063, a pair of medial keeled neck osteoderms from the Maastrichtian Kirtland Formation of New Mexico and the paratype NMMNH P-27450, a right middle neck plate. [12] Although later considered to a dubious name, [15] it is now considered a junior synonym of Glyptodontopelta mimus. [20]
The naming history was further complicated in 1971, when Walter Preston Coombs Jr renamed both Edmontonia species, into Panoplosaurus longiceps and Panoplosaurus rugosidens respectively. [21] The latter species, which due to its much more complete material has determined the image of Edmontonia, until 1940 thus appeared under the name of Palaeoscincus, and during the 1970s and 1980s was shown as "Panoplosaurus" until newer research revived the name Edmontonia.
In 2010, G.S. Paul suggested that E. rugosidens was the direct ancestor of Edmontonia longiceps and the latter was again the direct ancestor of E. schlessmani. [2]
C.M. Sternberg originally did not provide a classification of Edmontonia. In 1930, L.S. Russell placed the genus in the Nodosauridae, which has been confirmed by subsequent analyses. Edmontonia was generally shown to be a derived nodosaurid, closely related to Panoplosaurus. Russell in 1940 named a separate Edmontoniinae. In 1988 Bakker proposed that the Edmontoniinae with the Panoplosaurinae should be joined into Edmontoniidae, the presumed sister group of the Nodosauridae within Nodosauroidea which he assumed not be ankylosaurians but the last surviving stegosaurians. [5] Exact cladistic analysis has not confirmed these hypotheses however, and the concepts of Edmontoniinae and Edmontoniidae are not in modern use.
Edmontonia has been found as a close relative of Panoplosaurus in phylogenetic analysis, [22] including in the 2018 phylogenetic analysis of Rivera-Sylva and colleagues shown below; limited to the relationships within Panoplosaurini. [23] [24]
Panoplosaurini |
| |||||||||||||||||||||||||||
The large spikes were probably used between males in contests of strength to defend territory or gain mates. [1] The spikes would also have been useful for intimidating predators or rival males, passive protection, or for active self-defense. [1] The large forward pointing shoulder spikes could have been used to run through attacking theropods. [2] Carpenter suggested that the larger spikes of AMNH 5665 indicated this was a male specimen, a case of sexual dimorphism. However, he admitted the possibility of ontogeny, older individuals having longer spikes, as the specimen was relatively large. [3] Traditionally it had been assumed that to protect themselves from predators, nodosaurids like Edmontonia might have crouched down on the ground to minimize the possibility of attack to their defenseless underbelly, trying to prevent being flipped over by a predator. [2]
Rings in the petrified wood of trees contemporary with Edmontonia show evidence of strong seasonal changes in precipitation and temperature; [1] this may hold an explanation for why so many specimens have been found with their armor plating and spikes in the same position they were in life. [1] The Edmontonia could have died due to drought, dried up, and then rapidly became covered in sediment when the rainy season began. [1]
Edmontonia rugosidens existed in the upper section of the Dinosaur Park Formation, about 76.5–75 million years ago. It lived alongside numerous other giant herbivores, such as the hadrosaurids Gryposaurus , Corythosaurus and Parasaurolophus , the ceratopsids Centrosaurus and Chasmosaurus , and ankylosaurids Scolosaurus [11] and Dyoplosaurus [11] Studies of the jaw anatomy and mechanics of these dinosaurs suggests they probably all occupied slightly different ecological niches in order to avoid direct competition for food in such a crowded eco-space. [25] The only large predators known from the same levels of the formation as Edmontonia are the tyrannosaurids Gorgosaurus libratus and an unnamed species of Daspletosaurus . [11]
Edmontonia longiceps is known from the Horseshoe Canyon Formation, from the middle unit, which was dated to 71.5-71 million years ago in 2009. [11] The fauna of the Horseshoe Canyon Formation is well-known, as vertebrate fossils, including those of dinosaurs, are quite common. Sharks, rays, sturgeons, bowfins, gars and the gar-like Aspidorhynchus made up the fish fauna. The saltwater plesiosaur Leurospondylus has been found in marine sediments in the Horseshoe Canyon, while freshwater environments were populated by turtles, Champsosaurus , and crocodilians like Leidyosuchus and Stangerochampsa . Dinosaurs dominate the fauna, especially hadrosaurs, which make up half of all dinosaurs known, including the genera Edmontosaurus , Saurolophus and Hypacrosaurus . Ceratopsians and ornithomimids were also very common, together making up another third of the known fauna. Along with much rarer ankylosaurians and pachycephalosaurs, all of these animals would have been prey for a diverse array of carnivorous theropods, including troodontids, dromaeosaurids, and caenagnathids. [26] [27] Adult Albertosaurus was the apex predator in this environment, with intermediate niches possibly filled by juvenile albertosaurs. [26]
Ankylosauria is a group of herbivorous dinosaurs of the clade Ornithischia. It includes the great majority of dinosaurs with armor in the form of bony osteoderms, similar to turtles. Ankylosaurs were bulky quadrupeds, with short, powerful limbs. They are known to have first appeared in the Middle Jurassic, and persisted until the end of the Cretaceous Period. The two main families of Ankylosaurs, Nodosauridae and Ankylosauridae are primarily known from the Northern Hemisphere, but the more basal Parankylosauria are known from southern Gondwana during the Cretaceous.
Ankylosaurus is a genus of armored dinosaur. Its fossils have been found in geological formations dating to the very end of the Cretaceous Period, about 68–66 million years ago, in western North America, making it among the last of the non-avian dinosaurs. It was named by Barnum Brown in 1908; it is monotypic, containing only A. magniventris. The generic name means "fused" or "bent lizard", and the specific name means "great belly". A handful of specimens have been excavated to date, but a complete skeleton has not been discovered. Though other members of Ankylosauria are represented by more extensive fossil material, Ankylosaurus is often considered the archetypal member of its group, despite having some unusual features.
Polacanthus, deriving its name from the Ancient Greek polys-/πολύς- "many" and akantha/ἄκανθα "thorn" or "prickle", is an early armoured, spiked, plant-eating ankylosaurian dinosaur from the early Cretaceous period of England.
Niobrarasaurus is an extinct genus of nodosaurid ankylosaur which lived during the Cretaceous 87 to 82 million years ago. Its fossils were found in the Smoky Hill Chalk Member of the Niobrara Formation, in western Kansas, which would have been near the middle of Western Interior Sea during the Late Cretaceous. It was a nodosaurid, an ankylosaur without a clubbed tail. It was closely related to Nodosaurus.
Gastonia is a genus of herbivorous ankylosaurian dinosaur from the Early Cretaceous of North America, around 139 to 134.6 million years ago. It is often considered a nodosaurid closely related to Polacanthus. Gastonia has a sacral shield and large shoulder spikes.
Ankylosauridae is a family of armored dinosaurs within Ankylosauria, and is the sister group to Nodosauridae. The oldest known Ankylosaurids date to around 122 million years ago and went extinct 66 million years ago during the Cretaceous–Paleogene extinction event. These animals were mainly herbivorous and were obligate quadrupeds, with leaf-shaped teeth and robust, scute-covered bodies. Ankylosaurids possess a distinctly domed and short snout, wedge-shaped osteoderms on their skull, scutes along their torso, and a tail club.
Hungarosaurus tormai, is a herbivorous nodosaurid ankylosaur from the Upper Cretaceous (Santonian) Csehbánya Formation of the Bakony Mountains of western Hungary. It is the most completely known ankylosaur from the Cretaceous of Europe.
Aletopelta is a monospecific genus of basal ankylosaurid dinosaur from Southern California that lived during the Late Cretaceous in what is now the Point Loma Formation. The type and only species, Aletopelta coombsi, is known from a partial skeleton preserving osteoderms. It was originally described in 1996 by W. P. Coombs, Jr. and T.A. Deméré before being named in 2001 by Tracy Ford and James Kirkland. Aletopelta has an estimated size of 5 metres and weight of 2 tonnes. The holotype formed a miniature reef and was scavenged upon by invertebrates and sharks.
Nodosauridae is a family of ankylosaurian dinosaurs known from the Late Jurassic to the Late Cretaceous periods in what is now Asia, Europe, North America, and possibly South America. While traditionally regarded as a monophyletic clade as the sister taxon to the Ankylosauridae, some analyses recover it as a paraphyletic grade leading to the ankylosaurids.
Sauropelta is a genus of nodosaurid dinosaur that existed in the Early Cretaceous Period of North America. One species has been named although others may have existed. Anatomically, Sauropelta is one of the most well-understood nodosaurids, with fossilized remains recovered in the U.S. states of Wyoming, Montana, and possibly Utah. It is also the earliest known genus of nodosaurinae; most of its remains are found in a section of the Cloverly Formation dated to 108.5 million years ago.
Texasetes is a genus of ankylosaurian dinosaurs from the late Lower Cretaceous of North America. This poorly known genus has been recovered from the Paw Paw Formation near Haslet, Tarrant County, Texas, which has also produced the nodosaurid ankylosaur Pawpawsaurus.
Mymoorapelta is a nodosaurid ankylosaur from the Late Jurassic Morrison Formation of western Colorado and central Utah, USA. The animal is known from a single species, Mymoorapelta maysi, and few specimens are known. The most complete specimen is the holotype individual from the Mygatt-Moore Quarry, which includes osteoderms, a partial skull, vertebrae, and other bones. It was initially described by James Kirkland and Kenneth Carpenter in 1994. Along with Gargoyleosaurus, it is one of the earliest known nodosaurids.
Denversaurus is a genus of panoplosaurin nodosaurid dinosaur from the late Maastrichtian of Late Cretaceous Western North America. Although at one point treated as a junior synonym of Edmontonia by some taxonomists, current research indicates that it is its own distinct nodosaurid genus.
Panoplosaurus is a genus of armoured dinosaur from the Late Cretaceous of Alberta, Canada. Few specimens of the genus are known, all from the middle Campanian of the Dinosaur Park Formation, roughly 76 to 75 million years ago. It was first discovered in 1917, and named in 1919 by Lawrence Lambe, named for its extensive armour, meaning "well-armoured lizard". Panoplosaurus has at times been considered the proper name for material otherwise referred to as Edmontonia, complicating its phylogenetic and ecological interpretations, at one point being considered to have existed across Alberta, New Mexico and Texas, with specimens in institutions from Canada and the United States. The skull and skeleton of Panoplosaurus are similar to its relatives, but have a few significant differences, such as the lumpy form of the skull osteoderms, a completely fused shoulder blade, and regularly shaped plates on its neck and body lacking prominent spines. It was a quadrupedal animal, roughly 5 m (16 ft) long and 1,600 kg (3,500 lb) in weight. The skull has a short snout, with a very domed surface, and bony plates directly covering the cheek. The neck had circular groups of plates arranged around the top surface, both the forelimb and hindlimb were about the same length, and the hand may have only included three fingers. Almost the entire surface of the body was covered in plates, osteoderms and scutes of varying sizes, ranging from large elements along the skull and neck, to smaller, round bones underneath the chin and body, to small ossicles that filled in the spaces between other, larger osteoderms.
Palaeoscincus is a dubious genus of ankylosaurian dinosaur based on teeth from the mid-late Campanian-age Upper Cretaceous Judith River Formation of Montana. Like several other dinosaur genera named by Joseph Leidy, it is an historically important genus with a convoluted taxonomy that has been all but abandoned by modern dinosaur paleontologists. Because of its wide use in the early 20th century, it was somewhat well known to the general public, often through illustrations of an animal with the armor of Edmontonia and the tail club of an ankylosaurid.
Dracopelta is a monospecific genus of ankylosaur dinosaur from Portugal that lived during the Late Jurassic in what is now the Lourinhã Formation. The type and only species is Dracopelta zbyszewskii, which is represented by a partial skeleton including unpublished material.
Glyptodontopelta is a monospecific genus of nodosaurid dinosaur from New Mexico that lived during the Late Cretaceous in what is now the Naashoibito member of the Ojo Alamo Formation. The type and only species, Glyptodontopelta mimus, is known from numerous specimens that consist of osteoderms, a dentary, supraorbital and bone fragments. It was named in 2000 by Tracy Ford. Edmontonia australis is a junior synonym of Glyptodontopelta.
Propanoplosaurus is a genus of herbivorous nodosaurid dinosaur from the Early Cretaceous Patuxent Formation of Maryland, USA. Its type specimen is a natural cast and partial natural mold of a hatchling.
Europelta is a monospecific genus of nodosaurid dinosaur from Spain that lived during the Early Cretaceous in what is now the lower Escucha Formation of the Teruel Province. The type and only species, Europelta carbonensis, is known from two associated partial skeletons, and represents the most complete ankylosaur known from Europe. Europelta was named in 2013 by James I. Kirkland and colleagues. Europelta has an estimated length of 5 metres and weight of 1.3 tonnes, making it the largest member of the clade Struthiosaurini.
This timeline of ankylosaur research is a chronological listing of events in the history of paleontology focused on the ankylosaurs, quadrupedal herbivorous dinosaurs who were protected by a covering bony plates and spikes and sometimes by a clubbed tail. Although formally trained scientists did not begin documenting ankylosaur fossils until the early 19th century, Native Americans had a long history of contact with these remains, which were generally interpreted through a mythological lens. The Delaware people have stories about smoking the bones of ancient monsters in a magic ritual to have wishes granted and ankylosaur fossils are among the local fossils that may have been used like this. The Native Americans of the modern southwestern United States tell stories about an armored monster named Yeitso that may have been influenced by local ankylosaur fossils. Likewise, ankylosaur remains are among the dinosaur bones found along the Red Deer River of Alberta, Canada where the Piegan people believe that the Grandfather of the Buffalo once lived.
{{cite web}}
: CS1 maint: archived copy as title (link))