Far-red light

Last updated
The visible spectrum; far-red is located at the far right. Linear visible spectrum.svg
The visible spectrum; far-red is located at the far right.

Far-red light is a range of light at the extreme red end of the visible spectrum, just before infrared light. Usually regarded as the region between 700 and 750 nm wavelength, it is dimly visible to human eyes. It is largely reflected or transmitted by plants because of the absorbance spectrum of chlorophyll, and it is perceived by the plant photoreceptor phytochrome. However, some organisms can use it as a source of energy in photosynthesis. [1] [2] Far-red light also is used for vision by certain organisms such as some species of deep-sea fishes [3] [4] and mantis shrimp.

Contents

In horticulture

Plants perceive light through internal photoreceptors absorbing a specified wavelength signaling (photomorphogenesis) or transferring the energy to a plant process (photosynthesis). [5] In plants, the photoreceptors cryptochrome and phototropin absorb radiation in the blue spectrum (B: λ=400–500 nm) and regulate internal signaling such as hypocotyl inhibition, flowering time, and phototropism. [6] Additional receptors called phytochrome absorb radiation in the red (R: λ=660–730 nm) and far-red (FR: λ>730 nm) spectra and influence many aspects of plant development such as germination, seedling etiolation, transition to flowering, shade avoidance, and tropisms. [7] Phytochrome has the ability to interchange its conformation based on the quantity or quality of light it perceives and does so via photoconversion from phytochrome red (Pr) to phytochrome far-red (Pfr). [8] Pr is the inactive form of phytrochrome, ready to perceive red light. In a high R:FR environment, Pr changes conformation to the active form of phytochrome Pfr. Once active, Pfr translocates to the cellular nucleus, binds to phytochrome interacting factors (PIF), and targets the PIFs to the proteasome for degradation. Exposed to a low R:FR environment, Pfr absorbs FR and changes conformation back to the inactive Pr. The inactive conformation will remain in the cytosol, allowing PIFs to target their binding site on the genome and induce expression (i.e. shade avoidance through cellular elongation). [9] FR irradiation can lead to compromised plant immunity and increased pathogen susceptibility. [10]

FR has long been considered a minimal input in photosynthesis. In the early 1970’s, PhD physicist and soil crop professor Dr. Keith J. McCree lobbied for a standard definition of photosynthetically active radiation (PAR: λ=400–700 nm) which did not include FR. [11] More recently, scientists have provided evidence that a broader spectrum called photo-biologically active radiation (PBAR: λ=280–800 nm) is more applicable terminology. [12] This range of wavelengths not only includes FR, but also UV-A and UV-B. The Emerson Effect established that the rate of photosynthesis in red and green algae was higher when exposed to R and FR than the sum of the two individually. [13] This research laid the ground work for the elucidation of the dual photosystems in plants. Photosystem I (PSI) and photosystem II (PSII) work synergistically; through photochemical processes PSII transports electrons to PSI. Any imbalance between R and FR leads to unequal excitation between PSI and PSII, thereby reducing the efficiency of photochemistry. [14] [15]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorophyll</span> Green pigments found in plants, algae and bacteria

Chlorophyll is any of several related green pigments found in cyanobacteria and in the chloroplasts of algae and plants. Its name is derived from the Greek words χλωρός, khloros and φύλλον, phyllon ("leaf"). Chlorophyll allow plants to absorb energy from light.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a biological process used by many cellular organisms to convert light energy into chemical energy, which is stored in organic compounds that can later be metabolized through cellular respiration to fuel the organism's activities. The term usually refers to oxygenic photosynthesis, where oxygen is produced as a byproduct and some of the chemical energy produced is stored in carbohydrate molecules such as sugars, starch, glycogen and cellulose, which are synthesized from endergonic reaction of carbon dioxide with water. Most plants, algae and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the biological energy necessary for complex life on Earth.

Photobiology is the scientific study of the beneficial and harmful interactions of light in living organisms. The field includes the study of photophysics, photochemistry, photosynthesis, photomorphogenesis, visual processing, circadian rhythms, photomovement, bioluminescence, and ultraviolet radiation effects.

<span class="mw-page-title-main">Phytochrome</span> Protein used by plants, bacteria and fungi to detect light

Phytochromes are a class of photoreceptor proteins found in plants, bacteria and fungi. They respond to light in the red and far-red regions of the visible spectrum and can be classed as either Type I, which are activated by far-red light, or Type II that are activated by red light. Recent advances have suggested that phytochromes also act as temperature sensors, as warmer temperatures enhance their de-activation. All of these factors contribute to the plant's ability to germinate.

<span class="mw-page-title-main">Photosystem</span> Structural units of protein involved in photosynthesis

Photosystems are functional and structural units of protein complexes involved in photosynthesis. Together they carry out the primary photochemistry of photosynthesis: the absorption of light and the transfer of energy and electrons. Photosystems are found in the thylakoid membranes of plants, algae, and cyanobacteria. These membranes are located inside the chloroplasts of plants and algae, and in the cytoplasmic membrane of photosynthetic bacteria. There are two kinds of photosystems: PSI and PSII.

Photopigments are unstable pigments that undergo a chemical change when they absorb light. The term is generally applied to the non-protein chromophore moiety of photosensitive chromoproteins, such as the pigments involved in photosynthesis and photoreception. In medical terminology, "photopigment" commonly refers to the photoreceptor proteins of the retina.

In developmental biology, photomorphogenesis is light-mediated development, where plant growth patterns respond to the light spectrum. This is a completely separate process from photosynthesis where light is used as a source of energy. Phytochromes, cryptochromes, and phototropins are photochromic sensory receptors that restrict the photomorphogenic effect of light to the UV-A, UV-B, blue, and red portions of the electromagnetic spectrum.

<span class="mw-page-title-main">Photosynthetically active radiation</span> Range of light usable for photosynthesis

Photosynthetically active radiation (PAR) designates the spectral range of solar radiation from 400 to 700 nanometers that photosynthetic organisms are able to use in the process of photosynthesis. This spectral region corresponds more or less with the range of light visible to the human eye. Photons at shorter wavelengths tend to be so energetic that they can be damaging to cells and tissues, but are mostly filtered out by the ozone layer in the stratosphere. Photons at longer wavelengths do not carry enough energy to allow photosynthesis to take place.

Accessory pigments are light-absorbing compounds, found in photosynthetic organisms, that work in conjunction with chlorophyll a. They include other forms of this pigment, such as chlorophyll b in green algal and vascular ("higher") plant antennae, while other algae may contain chlorophyll c or d. In addition, there are many non-chlorophyll accessory pigments, such as carotenoids or phycobiliproteins, which also absorb light and transfer that light energy to photosystem chlorophyll. Some of these accessory pigments, in particular the carotenoids, also serve to absorb and dissipate excess light energy, or work as antioxidants. The large, physically associated group of chlorophylls and other accessory pigments is sometimes referred to as a pigment bed.

Shade avoidance is a set of responses that plants display when they are subjected to the shade of another plant. It often includes elongation, altered flowering time, increased apical dominance and altered partitioning of resources. This set of responses is collectively called the shade-avoidance syndrome (SAS).

Photodissociation, photolysis, photodecomposition, or photofragmentation is a chemical reaction in which molecules of a chemical compound are broken down by photons. It is defined as the interaction of one or more photons with one target molecule.

Photoprotection is the biochemical process that helps organisms cope with molecular damage caused by sunlight. Plants and other oxygenic phototrophs have developed a suite of photoprotective mechanisms to prevent photoinhibition and oxidative stress caused by excess or fluctuating light conditions. Humans and other animals have also developed photoprotective mechanisms to avoid UV photodamage to the skin, prevent DNA damage, and minimize the downstream effects of oxidative stress.

<span class="mw-page-title-main">Shade tolerance</span>

In ecology, shade tolerance is a plant's ability to tolerate low light levels. The term is also used in horticulture and landscaping, although in this context its use is sometimes imprecise, especially in labeling of plants for sale in commercial nurseries.

<span class="mw-page-title-main">Photoinhibition</span>

Photoinhibition is light-induced reduction in the photosynthetic capacity of a plant, alga, or cyanobacterium. Photosystem II (PSII) is more sensitive to light than the rest of the photosynthetic machinery, and most researchers define the term as light-induced damage to PSII. In living organisms, photoinhibited PSII centres are continuously repaired via degradation and synthesis of the D1 protein of the photosynthetic reaction center of PSII. Photoinhibition is also used in a wider sense, as dynamic photoinhibition, to describe all reactions that decrease the efficiency of photosynthesis when plants are exposed to light.

Photoreceptor proteins are light-sensitive proteins involved in the sensing and response to light in a variety of organisms. Some examples are rhodopsin in the photoreceptor cells of the vertebrate retina, phytochrome in plants, and bacteriorhodopsin and bacteriophytochromes in some bacteria. They mediate light responses as varied as visual perception, phototropism and phototaxis, as well as responses to light-dark cycles such as circadian rhythm and other photoperiodisms including control of flowering times in plants and mating seasons in animals.

<span class="mw-page-title-main">Photosynthetic reaction centre protein family</span>

Photosynthetic reaction centre proteins are main protein components of photosynthetic reaction centres (RCs) of bacteria and plants. They are transmembrane proteins embedded in the chloroplast thylakoid or bacterial cell membrane.

<span class="mw-page-title-main">Light-dependent reactions</span> Photosynthetic reactions

Light-dependent reactions refers to certain photochemical reactions that are involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions, the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).

<span class="mw-page-title-main">Anoxygenic photosynthesis</span> Process used by obligate anaerobes

Anoxygenic photosynthesis is a special form of photosynthesis used by some bacteria and archaea, which differs from the better known oxygenic photosynthesis in plants in the reductant used and the byproduct generated.

<span class="mw-page-title-main">Chlorophyll fluorescence</span> Light re-emitted by chlorophyll molecules during return from excited to non-excited states

Chlorophyll fluorescence is light re-emitted by chlorophyll molecules during return from excited to non-excited states. It is used as an indicator of photosynthetic energy conversion in plants, algae and bacteria. Excited chlorophyll dissipates the absorbed light energy by driving photosynthesis, as heat in non-photochemical quenching or by emission as fluorescence radiation. As these processes are complementary processes, the analysis of chlorophyll fluorescence is an important tool in plant research with a wide spectrum of applications.

<span class="mw-page-title-main">Photoautotrophism</span> Organisms that use light and inorganic carbon to produce organic materials

Photoautotrophs are organisms that can utilize light energy from sunlight and elements from inorganic compounds to produce organic materials needed to sustain their own metabolism. This biological activity is known as photosynthesis, and examples of such photosynthetic organisms include plants, algae and cyanobacteria.

References

Citations

  1. Pettai, Hugo; Oja, Vello; Freiberg, Arvi; Laisk, Agu (2005). "Photosynthetic activity of far-red light in green plants". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1708 (3): 311–21. doi: 10.1016/j.bbabio.2005.05.005 . PMID   15950173.
  2. Oquist, Gunnar (1969). "Adaptations in Pigment Composition and Photosynthesis by Far Red Radiation in Chlorella pyrenoidosa". Physiologia Plantarum. 22 (3): 516–528. doi:10.1111/j.1399-3054.1969.tb07406.x.
  3. Douglas, R. H.; Partridge, J. C.; Dulai, K.; Hunt, D.; Mullineaux, C. W.; Tauber, A. Y.; Hynninen, P. H. (1998). "Dragon fish see using chlorophyll". Nature. 393 (6684): 423. Bibcode:1998Natur.393..423D. doi:10.1038/30871. S2CID   4416089.
  4. "Scientists Discover Unique Microbe In California's Largest Lake". ScienceDaily . 11 January 2005.
  5. Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. (1988). "Photosynthetic efficiency and phytochrome photoequilibria determination using spectral data". Transactions of the ASAE. 31 (6): 1882–1889. doi:10.13031/2013.30952.
  6. Lin, Chentao (2000). "Plant blue-light receptors". Trends in Plant Science. 5 (8): 337–42. doi:10.1016/S1360-1385(00)01687-3. PMID   10908878.
  7. Taiz, Lincoln; Zeiger, Eduardo (2010). Plant Physiology (5th ed.). Sunderland, Massachusetts: Sinaur Associates, Inc.
  8. Heyes, Derren; Khara, Basile; Sakuma, Michiyo; Hardman, Samantha; O'Cualain, Ronan; Rigby, Stephen; Scrutton, Nigel (2012). "Ultrafast red light activation of Synechocystis phytochrome Cph1 triggers major structural change to for the Pfr signaling-competent state". PLOS ONE. 7 (12): e52418. Bibcode:2012PLoSO...752418H. doi: 10.1371/journal.pone.0052418 . PMC   3530517 . PMID   23300666.
  9. Frankhauser, Christian (2001). "The phytochroms, a family of red/far-red absorbing photoreceptors". The Journal of Biological Chemistry. 276 (15): 11453–6. doi: 10.1074/jbc.R100006200 . PMID   11279228.
  10. Courbier, Sarah; Grevink, Sanne; Sluijs, Emma; Bonhomme, Pierre-Olivier; Kajala, Kaisa; Van Wees, Saskia C.M.; Pierik, Ronald (24 August 2020). "Far-red light promotes Botrytis cinerea disease development in tomato leaves via jasmonate-dependent modulation of soluble sugars". Plant, Cell & Environment. 43 (11): 2769–2781. doi: 10.1111/pce.13870 . PMC   7693051 . PMID   32833234.
  11. McCree, Keith (1972). "The action spectrum, absorbance and quantum yield of photosynthesis in crop plants". Agricultural Meteorology. 9: 191–216. doi:10.1016/0002-1571(71)90022-7.
  12. Dӧrr, Oliver; Zimmermann, Benno; Kӧgler, Stine; Mibus, Heiko (2019). "Influence of leaf temperature and blue light on the accumulation of rosmarinic acid and other phenolic compounds in Plectranthus scutellarioides (L.)". Environmental and Experimental Botany. 167: 103830. Bibcode:2019EnvEB.16703830D. doi:10.1016/j.envexpbot.2019.103830. S2CID   201211911.
  13. Emerson, Robert; Chalmers, Ruth; Cederstrand, Carl (1957). "Some factors influencing the long-wave limit of photosynthesis". Proceedings of the National Academy of Sciences. 43 (1): 133–143. Bibcode:1957PNAS...43..133E. doi: 10.1073/pnas.43.1.133 . PMC   528397 . PMID   16589986.
  14. Zhen, S.; van Iersel, Marc W. (2017). "Far-red light is needed for efficient photochemistry and photosynthesis". Journal of Plant Physiology. 209: 115–122. doi: 10.1016/j.jplph.2016.12.004 . PMID   28039776.
  15. Pocock, Tessa. "The McCree curve demystified". Biophotonics. Retrieved 10 October 2019.

General sources