Leucyl endopeptidase

Last updated
Leucyl endopeptidase
Identifiers
EC no. 3.4.21.57
CAS no. 136396-22-0
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Leucyl endopeptidase (EC 3.4.21.57, plant Leu-proteinase, leucine-specific serine proteinase, leucine endopeptidase, spinach serine proteinase (leucine specific), spinach leucine-specific serine proteinase, Leu-proteinase) is an enzyme. [1] [2] This enzyme catalyses the following chemical reaction

Hydrolysis of proteins. Preferential cleavage: Leu- in small molecule substrates

This enzyme is isolated from leaves of the spinach plant ( Spinacia oleracea )

Related Research Articles

<span class="mw-page-title-main">Leucine</span> Chemical compound

Leucine (symbol Leu or L) is an essential amino acid that is used in the biosynthesis of proteins. Leucine is an α-amino acid, meaning it contains an α-amino group (which is in the protonated −NH3+ form under biological conditions), an α-carboxylic acid group (which is in the deprotonated −COO form under biological conditions), and a side chain isobutyl group, making it a non-polar aliphatic amino acid. It is essential in humans, meaning the body cannot synthesize it: it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, and beans and other legumes. It is encoded by the codons UUA, UUG, CUU, CUC, CUA, and CUG.

In biology and biochemistry, protease inhibitors, or antiproteases, are molecules that inhibit the function of proteases. Many naturally occurring protease inhibitors are proteins.

<span class="mw-page-title-main">Cysteine protease</span> Class of enzymes

Cysteine proteases, also known as thiol proteases, are hydrolase enzymes that degrade proteins. These proteases share a common catalytic mechanism that involves a nucleophilic cysteine thiol in a catalytic triad or dyad.

<span class="mw-page-title-main">Pepsin A</span>

Pepsin A is an enzyme. This enzyme catalyses the following chemical reaction

Amylolytic process or amylolysis is the conversion of starch into sugar by the action of acids or enzymes such as amylase.

<span class="mw-page-title-main">Leucyl aminopeptidase</span> Class of enzymes

Leucyl aminopeptidases are enzymes that preferentially catalyze the hydrolysis of leucine residues at the N-terminus of peptides and proteins. Other N-terminal residues can also be cleaved, however. LAPs have been found across superkingdoms. Identified LAPs include human LAP, bovine lens LAP, porcine LAP, Escherichia coli LAP, and the solanaceous-specific acidic LAP (LAP-A) in tomato.

In enzymology, a hydroxypyruvate reductase (EC 1.1.1.81) is an enzyme that catalyzes the chemical reaction

In enzymology, a leucine—tRNA ligase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Sucrose-phosphate synthase</span>

Sucrose-phosphate synthase (SPS) is a plant enzyme involved in sucrose biosynthesis. Specifically, this enzyme catalyzes the transfer of a hexosyl group from uridine diphosphate glucose (UDP-glucose) to D-fructose 6-phosphate to form UDP and D-sucrose-6-phosphate. This reversible step acts as the key regulatory control point in sucrose biosynthesis, and is an excellent example of various key enzyme regulation strategies such as allosteric control and reversible phosphorylation.

The N-end rule is a rule that governs the rate of protein degradation through recognition of the N-terminal residue of proteins. The rule states that the N-terminal amino acid of a protein determines its half-life. The rule applies to both eukaryotic and prokaryotic organisms, but with different strength, rules, and outcome. In eukaryotic cells, these N-terminal residues are recognized and targeted by ubiquitin ligases, mediating ubiquitination thereby marking the protein for degradation. The rule was initially discovered by Alexander Varshavsky and co-workers in 1986. However, only rough estimations of protein half-life can be deduced from this 'rule', as N-terminal amino acid modification can lead to variability and anomalies, whilst amino acid impact can also change from organism to organism. Other degradation signals, known as degrons, can also be found in sequence.

Nepenthesin is an aspartic protease of plant origin that has so far been identified in the pitcher secretions of Nepenthes and in the leaves of Drosera peltata. It is similar to pepsin, but differs in that it also cleaves on either side of Asp residues and at Lys┼Arg. While more pH and temperature stable than porcine pepsin A, it is considerably less stable in urea or guanidine hydrochloride. It is the only known protein with such a stability profile.

IgA protease is an enzyme. This enzyme catalyses the following chemical reaction[reaction equation needed]

Alpha-lytic endopeptidase or Alpha-lytic protease is an enzyme isolated from the myxobacterium Lysobacter enzymogenes. This enzyme is a serine protease that catalyses the breakage of peptide bonds using a hydrolysis chemical reaction. Alpha-lytic protease was named based on the observed cleavage specificity for the α position of the tetrapeptide component in gram-positive bacterial cell walls (alanine). Alpha-lytic protease is also capable of digesting elastin and other proteins.

<span class="mw-page-title-main">Glutamyl endopeptidase GluV8</span>

Glutamyl endopeptidase is an extracellular bacterial serine protease of the glutamyl endopeptidase I family that was initially isolated from the Staphylococcus aureus strain V8. The protease is, hence, commonly referred to as "V8 protease", or alternatively SspA from its corresponding gene.

Oryzin is an enzyme. This enzyme catalyses the following chemical reaction

Pestivirus NS3 polyprotein peptidase is an enzyme. This enzyme catalyses the following chemical reaction

Candidapepsin is an enzyme. This enzyme catalyses the following chemical reaction

Leishmanolysin is an enzyme. This enzyme catalyses the following chemical reaction

<span class="mw-page-title-main">PA clan of proteases</span>

The PA clan is the largest group of proteases with common ancestry as identified by structural homology. Members have a chymotrypsin-like fold and similar proteolysis mechanisms but can have identity of <10%. The clan contains both cysteine and serine proteases. PA clan proteases can be found in plants, animals, fungi, eubacteria, archaea and viruses.

<span class="mw-page-title-main">Sedolisin</span>

The sedolisin family of peptidases are a family of serine proteases structurally related to the subtilisin (S8) family. Well-known members of this family include sedolisin ("pseudomonalisin") found in Pseudomonas bacteria, xanthomonalisin ("sedolisin-B"), physarolisin as well as animal tripeptidyl peptidase I. It is also known as sedolysin or serine-carboxyl peptidase. This group of enzymes contains a variation on the catalytic triad: unlike S8 which uses Ser-His-Asp, this group runs on Ser-Glu-Asp, with an additional acidic residue Asp in the oxyanion hole.

References

  1. Aducci P, Ascenzi P, Pierini M, Ballio A (July 1986). "Purification and Characterization of Leu-Proteinase, the Leucine Specific Serine Proteinase from Spinach (Spinacia oleracea L.) Leaves". Plant Physiology. 81 (3): 812–6. doi:10.1104/pp.81.3.812. PMC   1075432 . PMID   16664908.
  2. Aducci P, Ascenzi P, Ballio A (October 1986). "Esterolytic Properties of Leucine-Proteinase, the Leucine-Specific Serine Proteinase from Spinach (Spinacia oleracea L.) Leaves : A Steady-State and Pre-Steady-State Study". Plant Physiology. 82 (2): 591–3. doi:10.1104/pp.82.2.591. PMC   1056164 . PMID   16665073.