Load shifting

Last updated

Load shifting is a dangerous phenomenon in water, air, and ground transportation where cargo shifts in a cargo vehicle. This causes the vehicle to tilt, which causes even more movement of the cargo, and further tilting, thereby creating a positive feedback loop. If not corrected, this will lead to severe tipping or even capsizing. Such a dangerous occurrence is prevented by active load management, avoiding high sea conditions for ships, and proper container/bulkhead design.

Contents

On a cargo airplane, a professional loadmaster is necessary to prevent the highly-dangerous phenomenon of load shifting. If cargo is not adequately secured, it can move during flight, and move the center of gravity outside of its safe operating limits, which will cause the aircraft to become uncontrollable or stall, and crash.

Ships

Ships are used to transport a majority of today's goods which is approximately 90% of all non bulk cargo. [1] Ensuring that loads do not dangerously shift is part of boat design and operation.

Container ship Barzan on its maiden voyage en route to the Port of Hamburg on June 29, 2015 Container ship Barzan on its maiden voyage en route to the Port of Hamburg on June 29, 2015.jpg
Container ship Barzan on its maiden voyage en route to the Port of Hamburg on June 29, 2015

Design

There are many types of loads that vessels carry that can shift, including containers, bulk cargo, liquids, and fluids that leak into bilges.

Shipping containers

Container ships are not particularly susceptible to dangerous load shifting. Most loads are in containers measuring 1/2, 1 or 2 TEUs, which are locked to each other and to the deck with twist-locks, and occasionally reinforced with steel cables. Containers generally only create an issue with the stability of the vessel when they break free. For example, if many of the containers break free and are hanging over the side, shifting the center of mass, most ships will cut the containers loose and add extra ballast water to compensate. [2] Objects shifting inside their containers is not dangerous to the overall ship since the objects can only shift a short distance within their container, and the shift in one or a few containers is insignificant compared to the overall mass of the entire ship and its cargo.

Bulk cargo

Just like fluids, bulk cargo can and will shift if a ship rolls enough. Shifting loads of bulk cargo can be very dangerous. In order to eliminate this threat, most ships that carry bulk tend to be lower in the water and only carry cargo up to the deck, not above it. Sometimes a honeycomb-like structure will be added to the cargo hold to prevent bulk from shifting enough to endanger the vessel and its crew. [3] [4]

Tanks

Fluids are the most dangerous cargo for load shifting due to the free surface effect. As a ship rolls, liquids tend to shift toward the lowest part of the vessel. When this happens more weight accumulates on the low side and will cause a more severe roll, potentially leading up to a capsize. To reduce this risk, tanks are built in sections split up by perforated panels. These panels allow slow movement of fluid through them, to keep the fluid level roughly equal between the tanks, but prevent dangerously fast movement of fluids through them, or sloshing. [3]

Bilges

Similar to tanks, bilges have ridges built into them, and also tend to slope downward toward pockets, where water gathers for pumps. The pumps then treat the water and send it overboard. A difficulty with bilges is that they do not have anti-slosh baffles like tanks, therefore water can move large distances and drastically shift the center of mass of the vessel. [2]

Guidelines

Many nations have guidelines as to how loads should be handled and stored. For the naval world it is often determined by SOLAS, IMO, and others. [5]

Planes

Chapter 1 of Weight and Balance Handbook (FAA-H-8083-1B), an FAA manual used to show how loading an aircraft changes center of mass. Weight control and balance of an aircraft.png
Chapter 1 of Weight and Balance Handbook (FAA-H-8083-1B), an FAA manual used to show how loading an aircraft changes center of mass.

Design

Cargo planes are designed to carry large loads long distances at high speed. In order to stay stable the center of gravity must be kept within safe operating limits. If loads break free or shift, this will move the center of gravity, causing the plane to be more difficult to control, or even causing a crash. [6] Examples of crashes caused by load shift include National Airlines Flight 102 in 2013, and the 1981 Pushkin Tu-104 crash.

Loading

Similar to shipping many countries have rules for loading aircraft. There are no worldwide regulations but many are similar. The US Federal Aviation Administration publishes specific guidelines on loading light aircraft, single-engine aircraft, multi-engine aircraft, commuter and large aircraft, and helicopters. [6]

Related Research Articles

Ship Large watercraft

A ship is a large watercraft that travels the world's oceans and other sufficiently deep waterways, carrying cargo or passengers, or in support of specialized missions, such as defense, research and fishing. Ships are generally distinguished from boats, based on size, shape, load capacity and purpose. Ships have supported exploration, trade, warfare, migration, colonization, and science. After the 15th century, new crops that had come from and to the Americas via the European seafarers significantly contributed to world population growth. Ship transport is responsible for the largest portion of world commerce.

<span class="mw-page-title-main">Naval architecture</span> Engineering discipline dealing with the design and construction of marine vessels

Naval architecture, or naval engineering, is an engineering discipline incorporating elements of mechanical, electrical, electronic, software and safety engineering as applied to the engineering design process, shipbuilding, maintenance, and operation of marine vessels and structures. Naval architecture involves basic and applied research, design, development, design evaluation (classification) and calculations during all stages of the life of a marine vehicle. Preliminary design of the vessel, its detailed design, construction, trials, operation and maintenance, launching and dry-docking are the main activities involved. Ship design calculations are also required for ships being modified. Naval architecture also involves formulation of safety regulations and damage-control rules and the approval and certification of ship designs to meet statutory and non-statutory requirements.

<span class="mw-page-title-main">Port</span> Maritime facility where ships may dock to load and discharge passengers and cargo

A port is a maritime facility comprising one or more wharves or loading areas, where ships load and discharge cargo and passengers. Although usually situated on a sea coast or estuary, ports can also be found far inland, such as Hamburg, Manchester and Duluth; these access the sea via rivers or canals. Because of their roles as ports of entry for immigrants as well as soldiers in wartime, many port cities have experienced dramatic multi-ethnic and multicultural changes throughout their histories.

<span class="mw-page-title-main">Metacentric height</span> Measurement of the initial static stability of a floating body

The metacentric height (GM) is a measurement of the initial static stability of a floating body. It is calculated as the distance between the centre of gravity of a ship and its metacentre. A larger metacentric height implies greater initial stability against overturning. The metacentric height also influences the natural period of rolling of a hull, with very large metacentric heights being associated with shorter periods of roll which are uncomfortable for passengers. Hence, a sufficiently, but not excessively, high metacentric height is considered ideal for passenger ships.

<span class="mw-page-title-main">Capsizing</span> Action where a vessel turns on to its side or is upside down

Capsizing or keeling over occurs when a boat or ship is rolled on its side or further by wave action, instability or wind force beyond the angle of positive static stability or it is upside down in the water. The act of recovering a vessel from a capsize is called righting. Capsize may result from broaching, knockdown, loss of stability due to cargo shifting or flooding, or in high speed boats, from turning too fast.

Bulk carrier Ship made to transport unpackaged bulk cargo

A bulk carrier or bulker is a merchant ship specially designed to transport unpackaged bulk cargo—such as grain, coal, ore, steel coils, and cement—in its cargo holds. Since the first specialized bulk carrier was built in 1852, economic forces have led to increased size and sophistication of these ships. Today's bulk carriers are specially designed to maximize capacity, safety, efficiency, and durability.

Roll-on/roll-off ships are cargo ships designed to carry wheeled cargo, such as cars, motorcycles, trucks, semi-trailer trucks, buses, trailers, and railroad cars, that are driven on and off the ship on their own wheels or using a platform vehicle, such as a self-propelled modular transporter. This is in contrast to lift-on/lift-off (LoLo) vessels, which use a crane to load and unload cargo.

Ballast is used in ships to provide moment to resist the lateral forces on the hull. Insufficiently ballasted boats tend to tip or heel excessively in high winds. Too much heel may result in the vessel capsizing. If a sailing vessel needs to voyage without cargo, then ballast of little or no value will be loaded to keep the vessel upright. Some or all of this ballast will then be discarded when cargo is loaded.

<span class="mw-page-title-main">Tanker (ship)</span> Ship designed to transport liquids or gases in bulk

A tanker is a ship designed to transport or store liquids or gases in bulk. Major types of tankship include the oil tanker, the chemical tanker, and gas carrier. Tankers also carry commodities such as vegetable oils, molasses and wine. In the United States Navy and Military Sealift Command, a tanker used to refuel other ships is called an oiler but many other navies use the terms tanker and replenishment tanker. Tankers were first developed in the late 19th century as iron and steel hulls and pumping systems were developed. As of 2005, there were just over 4,000 tankers and supertankers 10,000 LT DWT or greater operating worldwide.

<span class="mw-page-title-main">Marine engineering</span> Engineering and design of shipboard systems

Marine engineering is the engineering of boats, ships, submarines, and any other marine vessel. Here it is also taken to include the engineering of other ocean systems and structures – referred to in certain academic and professional circles as “ocean engineering.”

<span class="mw-page-title-main">Free surface effect</span> Effect of liquids in slack tanks

The free surface effect is a mechanism which can cause a watercraft to become unstable and capsize.

<span class="mw-page-title-main">Slosh dynamics</span> Movement of liquid inside another moving object

In fluid dynamics, slosh refers to the movement of liquid inside another object.

<span class="mw-page-title-main">Ship stability</span> Ship response to disturbance from an upright condition

Ship stability is an area of naval architecture and ship design that deals with how a ship behaves at sea, both in still water and in waves, whether intact or damaged. Stability calculations focus on centers of gravity, centers of buoyancy, the metacenters of vessels, and on how these interact.

<span class="mw-page-title-main">LNG carrier</span> Tank ship transporting liquefied natural gas

An LNG carrier is a tank ship designed for transporting liquefied natural gas (LNG).

<span class="mw-page-title-main">Heavy-lift ship</span> Vessel designed to move very large loads

A heavy-lift ship is a vessel designed to move very large loads that cannot be handled by normal ships. They are of two types:

<span class="mw-page-title-main">Breakbulk cargo</span> Shipping goods that are loaded individually

In shipping, break-bulk, breakbulk, or break bulk cargo, also called general cargo, refers to goods that are stowed on board ship in individually counted units. Traditionally, the large numbers of items are recorded on distinct bills of lading that list them by different commodities. This is in contrast to cargo stowed in modern intermodal containers as well as bulk cargo, which goes directly, unpackaged and in large quantities, into a ship's hold(s), measured by volume or weight.

The MACS3 Loading Computer System is a computer controlled loading system for commercial vessels, developed by Navis. Prior to October, 2017 it was offered by Interschalt maritime systems GmbH, before by Seacos Computersysteme & Software GmbH.

A shipping container is a container with strength suitable to withstand shipment, storage, and handling. Shipping containers range from large reusable steel boxes used for intermodal shipments to the ubiquitous corrugated boxes. In the context of international shipping trade, "container" or "shipping container" is virtually synonymous with "intermodal freight container", a container designed to be moved from one mode of transport to another without unloading and reloading.

<span class="mw-page-title-main">Flexible tank</span>

Flexible tanks are a kind of storage equipment for liquids such as water or oil. Compared to steel tanks, flexible tanks have many advantages, including lighter weight and being rustproof, foldable, and quicker and easier to set up. With the same capacity, an empty flexible tank may have just 10% of a steel tank's weight. The disadvantages of flexible tanks include lower durability and shorter longevity. Some flexible tanks can be used as transport containers on trucks, ships, or aeroplanes, with some suitable for use in airdrops, helicopter swing, or hauling water.

<span class="mw-page-title-main">Ballast</span> Material that is used to provide stability to a vehicle or structure

Ballast is material that is used to provide stability to a vehicle or structure. Ballast, other than cargo, may be placed in a vehicle, often a ship or the gondola of a balloon or airship, to provide stability. A compartment within a boat, ship, submarine, or other floating structure that holds water is called a ballast tank. Water should move in and out from the ballast tank to balance the ship. In a vessel that travels on the water, the ballast will remain below the water level, to counteract the effects of weight above the water level. The ballast may be redistributed in the vessel or disposed of altogether to change its effects on the movement of the vessel.

References

  1. "Shipping and World Trade". International Chamber of Shipping.
  2. 1 2 Barrass, Bryan & Captain D. R. Derrett (2006). Ship Stability for Masters and Mates (6th edition). Elsevier Science. ISBN   9780750667845.
  3. 1 2 Tupper, E. C. (2004). Introduction to Naval Architecture: Formerly Muckle's Naval Architecture for Marine Engineers (4th edition). Elsevier Science. ISBN   9780750665544.
  4. Lei Ju, Yanzhuo Xue, Dracos Vassalos, Yang Liu, Baoyu Ni (2017). Numerical investigation of rolling response of a 2D rectangular hold, partially filled with moist bulk cargo. ScienceDirect Journals. pp. 348–362.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. "Safe transport of containers".
  6. 1 2 "Weight and Balance Handbook (FAA-H-8083-1B)" (PDF). US Department of Transportation. 2016.