Local hidden variable theory

Last updated

A local hidden variable theory in the interpretation of quantum mechanics is a hidden variable theory that has the added requirement of being consistent with local realism. It refers to all types of the theory that attempt to account for the probabilistic features of quantum mechanics by the mechanism of underlying inaccessible variables, with the additional requirement from local realism that distant events be independent, ruling out instantaneous (i.e. faster-than-light) interactions between separate events.

An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics "corresponds" to reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation.

Quantum mechanics branch of physics dealing with phenomena at scales of the order of the Planck constant

Quantum mechanics, including quantum field theory, is a fundamental theory in physics which describes nature at the smallest scales of energy levels of atoms and subatomic particles.

Contents

The mathematical implications of a local hidden variable theory in regard to the phenomenon of quantum entanglement were explored by physicist John S Bell. Bell's 1964 paper (see Bell's theorem) showed that local hidden variables of certain type cannot reproduce the quantum measurement correlations that quantum mechanics predicts.

Quantum entanglement physical phenomenon

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are generated, interact, or share spatial proximity in ways such that the quantum state of each particle cannot be described independently of the state of the others, even when the particles are separated by a large distance.

John Stewart Bell Northern Irish physicist

John Stewart Bell FRS was an Ulster Scot physicist from Northern Ireland, and the originator of Bell's theorem, an important theorem in quantum physics regarding hidden variable theories.

Bells theorem theorem in quantum physics

Bell's theorem is a "no-go theorem" that draws an important distinction between quantum mechanics and the world as described by classical mechanics, particularly concerning quantum entanglement where two or more particles in a quantum state continue to be mutually dependent, even at large physical separations. This theorem is named after John Stewart Bell.

The theory of quantum entanglement predicts that separated particles can briefly share common properties and respond to certain types of measurement as if they were a single particle. In particular, a measurement on one particle in one place can alter the probability distribution for the outcomes of a measurement on the other particle at a different location. If a measurement setting in one location instantaneously modifies the probability distribution that applies at a distant location, then local hidden variables are ruled out. For an expanded description, see Bell's theorem.

Local hidden variables and the Bell tests

Bell's theorem starts with the implication of the principle of local realism: That separated measurement processes are independent. Based on this premise, the probability of a coincidence between separated measurements of particles with correlated (e.g. identical or opposite) orientation properties can be written:

 

 

 

 

(1)

where is the probability of detection of particle with hidden variable by detector , set in direction , and similarly is the probability at detector , set in direction , for particle , sharing the same value of . The source is assumed to produce particles in the state with probability .

Using ( 1 ), various Bell inequalities can be derived, these inequalities provide limits on the possible behaviour of local hidden variable models.

When John Bell originally derived his inequality, it was in relation to pairs of entangled spin-1/2 particles, every one of those emitted being detected. Bell showed that when detectors are rotated with respect to each other, local realist models must yield a correlation curve that is bounded by a straight line between maxima (detectors aligned), whereas the quantum correlation curve is a cosine relationship.

The term quantum correlation has come to mean the expectation value of the product of the outcomes on the two sides. In other words, the expected change in physical characteristics as one quantum system passes through an interaction site. In John Bell's 1964 paper that inspired the Bell tests, it was assumed that the outcomes A and B could each only take one of two values, -1 or +1. It followed that the product, too, could only be -1 or +1, so that the average value of the product would be

The first Bell test experiments were not performed with spin 1/2 particles, and were performed with photons which have spin 1. A classical local hidden variable prediction for photons, based on Maxwell's equations, yields a cosine curve but of reduced amplitude such that the curve still lies within the straight-line limits specified in the original Bell inequality.

A great variety of realist models could be proposed and they can be arbitrary provided that they yield results consistent with experiments.

Bell's theorem assumes that measurement settings are completely independent, and not in principle determined by the universe at large. If this assumption were to be incorrect, as proposed in superdeterminism, conclusions drawn from Bell's theorem may be invalidated. The theorem also relies on very efficient and space-like separated measurements, not yet satisfied simultaneously experimentally. Such flaws are generally called loopholes.

Bell tests with no "non-detections"

Consider, for example, David Bohm's thought-experiment (Bohm, 1951), in which a molecule breaks into two atoms with opposite spins. Assume this spin can be represented by a real vector, pointing in any direction. It will be the "hidden variable" in our model. Taking it to be a unit vector, all possible values of the hidden variable are represented by all points on the surface of a unit sphere.

Suppose the spin is to be measured in the direction a. Then the natural assumption, given that all atoms are detected, is that all atoms the projection of whose spin in the direction a is positive will be detected as spin up (coded as +1) while all whose projection is negative will be detected as spin down (coded as 1). The surface of the sphere will be divided into two regions, one for +1, one for 1, separated by a great circle in the plane perpendicular to a. Assuming for convenience that a is horizontal, corresponding to the angle a with respect to some suitable reference direction, the dividing circle will be in a vertical plane. So far we have modelled side A of our experiment.

Now to model side B. Assume that b too is horizontal, corresponding to the angle b. There will be second great circle drawn on the same sphere, to one side of which we have +1, the other 1 for particle B. The circle will be again in a vertical plane.

The two circles divide the surface of the sphere into four regions. The type of "coincidence" (++, , + or +) observed for any given pair of particles is determined by the region within which their hidden variable falls. Assuming the source to be "rotationally invariant" (to produce all possible states λ with equal probability), the probability of a given type of coincidence will clearly be proportional to the corresponding area, and these areas will vary linearly with the angle between a and b. (To see this, think of an orange and its segments. The area of peel corresponding to a number n of segments is roughly proportional to n. More accurately, it is proportional to the angle subtended at the centre.)

The formula (1) above has not been used explicitly it is hardly relevant when, as here, the situation is fully deterministic. The problem could be reformulated in terms of the functions in the formula, with ρ constant and the probability functions step functions. The principle behind (1) has in fact been used, but purely intuitively.

Fig. 1: The realist prediction (solid lines) for quantum correlation when there are no non-detections. The quantum-mechanical prediction is the dotted curve. StraightLines.svg
Fig. 1: The realist prediction (solid lines) for quantum correlation when there are no non-detections. The quantum-mechanical prediction is the dotted curve.

Thus the local hidden variable prediction for the probability of coincidence is proportional to the angle (b a) between the detector settings. The quantum correlation is defined to be the expectation value of the sum of the individual outcomes, and this is

(2)   E = P++ + PP+P+

where P++ is the probability of a '+' outcome on both sides, P+ that of a + on side A, a '' on side B, etc..

Since each individual term varies linearly with the difference (ba), so does their sum.

The result is shown in fig. 1.

Optical Bell tests

In almost all real applications of Bell's inequalities, the particles used have been photons. It is not necessarily assumed that the photons are particle-like. They may be just short pulses of classical light (Clauser, 1978). It is not assumed that every single one is detected. Instead the hidden variable set at the source is taken to determine only the probability of a given outcome, the actual individual outcomes being partly determined by other hidden variables local to the analyser and detector. It is assumed that these other hidden variables are independent on the two sides of the experiment (Clauser, 1974; Bell, 1971).

In this stochastic model, in contrast to the above deterministic case, we do need equation (1) to find the local realist prediction for coincidences. It is necessary first to make some assumption regarding the functions and , the usual one being that these are both cosine-squares, in line with Malus' Law. Assuming the hidden variable to be polarisation direction (parallel on the two sides in real applications, not orthogonal), equation (1) becomes:

(3) , where .

The predicted quantum correlation can be derived from this and is shown in fig. 2.

Fig. 2: The realist prediction (solid curve) for quantum correlation in an optical Bell test. The quantum-mechanical prediction is the dotted curve. MalusQC.png
Fig. 2: The realist prediction (solid curve) for quantum correlation in an optical Bell test. The quantum-mechanical prediction is the dotted curve.

In optical tests, incidentally, it is not certain that the quantum correlation is well-defined. Under a classical model of light, a single photon can go partly into the + channel, partly into the one, resulting in the possibility of simultaneous detections in both. Though experiments such as Grangier et al.'s (Grangier, 1986) have shown that this probability is very low, it is not logical to assume that it is actually zero. The definition of quantum correlation is adapted to the idea that outcomes will always be +1, 1 or 0. There is no obvious way of including any other possibility, which is one of the reasons why Clauser and Horne's 1974 Bell test, using single-channel polarisers, should be used instead of the CHSH Bell test. The CH74 inequality concerns just probabilities of detection, not quantum correlations.

Quantum states with a local hidden variable model

For separable states of two particles, there is a simple hidden variable model for any measurements on the two parties. Surprisingly, there are also entangled states for which all von Neumann measurements can be described by a hidden variable model. [1] Such states are entangled, but do not violate any Bell inequality. The so-called Werner states are a single-parameter family of states that are invariant under any transformation of the type where is a unitary matrix. For two qubits, they are noisy singlets given as

(4) where the singlet is defined as

R. F. Werner showed that such states allow for a hidden variable model for while they are entangled if The bound for hidden variable models could be improved until [2] Hidden variable models have been constructed for Werner states even if POVM measurements are allowed, not only von Neumann measurements. [3] Beside bipartite systems, there are also results for the multipartite case. A hidden variable model for any von Neumann measurements at the parties has been presented for a three-qubit quantum state. [4]

Generalizations of the models

By varying the assumed probability and density functions in equation (1) we can arrive at a considerable variety of local realist predictions.

Time effects

Previously some new hypotheses were conjectured concerning the role of time in constructing hidden variables theory. One approach is suggested by K. Hess and W. Philipp (Hess, 2002) and discusses possible consequences of time dependences of hidden variables, previously not taken into account by Bell's theorem. This hypothesis has been criticized by R.D. Gill, G. Weihs, A. Zeilinger and M. Żukowski (Gill, 2002).

Another hypothesis suggests to review the notion of physical time (Kurakin, 2004). Hidden variables in this concept evolve in so called 'hidden time', not equivalent to physical time. Physical time relates to 'hidden time' by some 'sewing procedure'.[ vague ] This model stays physically non-local, though the locality is achieved in mathematical sense.[ clarification needed ]

Optical models deviating from Malus' Law

If we make realistic (wave-based) assumptions regarding the behaviour of light on encountering polarisers and photodetectors, we find that we are not compelled to accept that the probability of detection will reflect Malus' Law exactly.

We might perhaps suppose the polarisers to be perfect, with output intensity of polariser A proportional to cos2(a λ), but reject the quantum-mechanical assumption that the function relating this intensity to the probability of detection is a straight line through the origin. Real detectors, after all, have "dark counts" that are there even when the input intensity is zero, and become saturated when the intensity is very high. It is not possible for them to produce outputs in exact proportion to input intensity for all intensities.

By varying our assumptions, it seems possible that the realist prediction could approach the quantum-mechanical one within the limits of experimental error (Marshall, 1983), though clearly a compromise must be reached. We have to match both the behaviour of the individual light beam on passage through a polariser and the observed coincidence curves. The former would be expected to follow Malus' Law fairly closely, though experimental evidence here is not so easy to obtain. We are interested in the behaviour of very weak light and the law may be slightly different from that of stronger light.

General remarks

Hydrodynamic quantum analogs provide some experimental support for local hidden variable models. Walking droplet systems have been found to mimic several quantum mechanical phenomena including particle diffraction, quantum tunneling, quantized orbits, the Zeeman Effect, and the quantum corral. Keith Moffatt states "The work of Yves Couder and the related work of John Bush … provides the possibility of understanding previously incomprehensible quantum phenomena, involving 'wave-particle duality,' in purely classical terms". [5]

Related Research Articles

EPR paradox early and influential critique leveled against quantum mechanics

The Einstein–Podolsky–Rosen paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) that they interpreted as indicating that the explanation of physical reality provided by Quantum Mechanics was incomplete. In a 1935 paper titled Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, they attempted to mathematically show that the wave function does not contain complete information about physical reality, and hence the Copenhagen interpretation is unsatisfactory; resolutions of the paradox have important implications for the interpretation of quantum mechanics.

In physics, the CHSH inequality can be used in the proof of Bell's theorem, which states that certain consequences of entanglement in quantum mechanics cannot be reproduced by local hidden variable theories. Experimental verification of violation of the inequalities is seen as experimental confirmation that nature cannot be described by local hidden variables theories. CHSH stands for John Clauser, Michael Horne, Abner Shimony, and Richard Holt, who described it in a much-cited paper published in 1969. They derived the CHSH inequality, which, as with John Bell's original inequality, is a constraint on the statistics of "coincidences" in a Bell test experiment which is necessarily true if there exist underlying local hidden variables. This constraint can, on the other hand, be infringed by quantum mechanics.

GHZ experiments are a class of physics experiments that may be used to generate starkly contrasting predictions from local hidden variable theory and quantum mechanical theory, and permit immediate comparison with actual experimental results. A GHZ experiment is similar to a test of Bell's inequality, except using three or more entangled particles, rather than two. With specific settings of GHZ experiments, it is possible to demonstrate absolute contradictions between the predictions of local hidden variable theory and those of quantum mechanics, whereas tests of Bell's inequality only demonstrate contradictions of a statistical nature. The results of actual GHZ experiments agree with the predictions of quantum mechanics.

Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that

In physics, hidden-variable theories are held by some physicists who argue that the state of a physical system, as formulated by quantum mechanics, does not give a complete description for the system. An example would be that quantum mechanics is ultimately incomplete, and that a complete theory would provide descriptive categories to account for all observable behavior and thus avoid any indeterminism. The existence of indeterminacy for some measurements is a characteristic of prevalent interpretations of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle.

In physics, the principle of locality states that an object is directly influenced only by its immediate surroundings. A theory which includes the principle of locality is said to be a "local theory". This is an alternative to the older concept of instantaneous "action at a distance". Locality evolved out of the field theories of classical physics. The concept is that for an action at one point to have an influence at another point, something in the space between those points such as a field must mediate the action. To exert an influence, something, such as a wave or particle, must travel through the space between the two points, carrying the influence.

In Bell test experiments, there may be problems of experimental design or set-up that affect the validity of the experimental findings. These problems are often referred to as "loopholes". See the article on Bell's theorem for the theoretical background to these experimental efforts. The purpose of the experiment is to test whether nature is best described using a local hidden variable theory or by the quantum entanglement theory of quantum mechanics.

A Bell test experiment or Bell's inequality experiment, also simply a Bell test, is a real-world physics experiment designed to test the theory of quantum mechanics in relation to Einstein's concept of local realism. The experiments test whether or not the real world satisfies local realism, which requires the presence of some additional local variables to explain the behavior of particles like photons and electrons. According to Bell's theorem, if nature actually operates in accord with any theory of local hidden variables, then the results of a Bell test will be constrained in a particular, quantifiable way. If a Bell test is performed in a laboratory and the results are not thus constrained, then they are inconsistent with the hypothesis that local hidden variables exist. Such results would support the position that there is no way to explain the phenomena of quantum mechanics in terms of a more fundamental description of nature that is more in line with the rules of classical physics. Many types of Bell test have been performed in physics laboratories, often with the goal of ameliorating problems of experimental design or set-up that could in principle affect the validity of the findings of earlier Bell tests. This is known as "closing loopholes in Bell test experiments".

The intention of a Bell inequality is to serve as a test of local realism or local hidden variable theories as against quantum mechanics, applying Bell's theorem, which shows them to be incompatible. Not all the Bell's inequalities that appear in the literature are in fact fit for this purpose. The one discussed here holds only for a very limited class of local hidden variable theories and has never been used in practical experiments. It is, however, discussed by John Bell in his "Bertlmann's socks" paper, where it is referred to as the "Wigner–d'Espagnat inequality". It is also variously attributed to Bohm (1951?) and Belinfante (1973).

The Bell states, a concept in quantum information science, are specific quantum states of two qubits that represent the simplest examples of quantum entanglement. The Bell states are a form of entangled and normalized basis vectors. This normalization implies that the overall probability of the particle being in one of the mentioned states is 1: . Entanglement is a basis-independent result of superposition. Due to this superposition, measurement of the qubit will collapse it into one of its basis states with a given probability. Because of the entanglement, measurement of one qubit will assign one of two possible values to the other qubit instantly, where the value assigned depends on which Bell state the two qubits are in. Bell states can be generalized to represent specific quantum states of multi-qubit systems, such as the GHZ state for 3 subsystems.

The free will theorem of John H. Conway and Simon B. Kochen states that if we have a free will in the sense that our choices are not a function of the past, then, subject to certain assumptions, so must some elementary particles. Conway and Kochen's paper was published in Foundations of Physics in 2006. In 2009 they published a stronger version of the theorem in the Notices of the AMS. Later Kochen elaborated some details.

In quantum mechanics, the Kochen–Specker (KS) theorem, also known as the Bell–Kochen–Specker theorem, is a "no-go" theorem proved by John S. Bell in 1966 and by Simon B. Kochen and Ernst Specker in 1967. It places certain constraints on the permissible types of hidden-variable theories, which try to explain the predictions of quantum mechanics in a context-independent way. The version of the theorem proved by Kochen and Specker also gave an explicit example for this constraint in terms of a finite number of state vectors. The theorem is a complement to Bell's theorem.

The Born rule, formulated by German physicist Max Born in 1926, is a physical law of quantum mechanics giving the probability that a measurement on a quantum system will yield a given result. In its simplest form it states that the probability density of finding the particle at a given point is proportional to the square of the magnitude of the particle's wavefunction at that point. The Born rule is one of the key principles of quantum mechanics.

In theoretical physics, quantum nonlocality is a characteristic of some measurements made at a microscopic level that contradict the assumptions of local realism found in classical mechanics. Despite consideration of hidden variables as a possible resolution of this contradiction, some aspects of entangled quantum states have been demonstrated irreproducible by any local hidden variable theory. Bell's theorem is one such demonstration which has been verified by experiment.

Superdeterminism hypothetical class of theories that evade Bells theorem by virtue of being completely deterministic

In quantum mechanics, superdeterminism is a hypothetical class of theories that evade Bell's theorem by virtue of being completely deterministic. It is conceivable that someone could exploit this loophole to construct a local hidden variable theory that reproduces the predictions of quantum mechanics. Superdeterminists do not recognize the existence of genuine chances or possibilities anywhere in the cosmos.

Hardy's paradox is a thought experiment in quantum mechanics devised by Lucien Hardy in 1992–3 in which a particle and its antiparticle may interact without annihilating each other.

Aspect's experiment was the first quantum mechanics experiment to demonstrate the violation of Bell's inequalities. Its irrefutable result allowed for further validation of the quantum entanglement and locality principles. It also offered an experimental answer to Albert Einstein, Boris Podolsky and Nathan Rosen's paradox which had been proposed about fifty years earlier.

References

  1. R. F. Werner (1989). "Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model". Physical Review A . 40 (8): 4277–4281. Bibcode:1989PhRvA..40.4277W. doi:10.1103/PhysRevA.40.4277.
  2. A. Acín; N. Gisin; B. Toner (2006). "Grothendieck's constant and local models for noisy entangled quantum states". Physical Review A . 73 (6): 062105. arXiv: quant-ph/0606138 Lock-green.svg. Bibcode:2006PhRvA..73f2105A. doi:10.1103/PhysRevA.73.062105.
  3. J. Barrett (2002). "Nonsequential positive-operator-valued measurements on entangled mixed states do not always violate a Bell inequality". Physical Review A . 65 (4): 042302. arXiv: quant-ph/0107045 Lock-green.svg. Bibcode:2002PhRvA..65d2302B. doi:10.1103/PhysRevA.65.042302.
  4. G. Tóth; A. Acín (2006). "Genuine tripartite entangled states with a local hidden-variable model". Physical Review A . 74 (3): 030306. arXiv: quant-ph/0512088 Lock-green.svg. Bibcode:2006PhRvA..74c0306T. doi:10.1103/PhysRevA.74.030306.
  5. Larry Hardesty (2015). "Fluid mechanics suggests alternative to quantum orthodoxy". PHYS.ORG. The work of Yves Couder and the related work of John Bush … provides the possibility of understanding previously incomprehensible quantum phenomena, involving 'wave-particle duality,' in purely classical terms