In physics, hidden variable theories are held by some physicists who argue that the state of a physical system, as formulated by quantum mechanics, does not give a complete description for the system; i.e., that quantum mechanics is ultimately incomplete, and that a complete theory would provide descriptive categories to account for all observable behavior and thus avoid any indeterminism. The existence of indeterminacy for some measurements is a characteristic of prevalent interpretations of quantum mechanics; moreover, bounds for indeterminacy can be expressed in a quantitative form by the Heisenberg uncertainty principle.
Physics is the natural science that studies matter, its motion, and behavior through space and time, and that studies the related entities of energy and force. Physics is one of the most fundamental scientific disciplines, and its main goal is to understand how the universe behaves.
In quantum physics, quantum state refers to the state of an isolated quantum system. A quantum state provides a probability distribution for the value of each observable, i.e. for the outcome of each possible measurement on the system. Knowledge of the quantum state together with the rules for the system's evolution in time exhausts all that can be predicted about the system's behavior.
Quantum mechanics, including quantum field theory, is a fundamental theory in physics which describes nature at the smallest scales of energy levels of atoms and subatomic particles.
Albert Einstein, the most famous proponent of hidden variables, objected to the fundamentally probabilistic nature of quantum mechanics, [1] and famously declared "I am convinced God does not play dice". [2] Einstein, Podolsky, and Rosen argued that "elements of reality" (hidden variables) must be added to quantum mechanics to explain entanglement without action at a distance. [3] [4] Later, Bell's theorem suggested that local hidden variables of certain types are impossible, or that they evolve non-locally. A famous non-local theory is De Broglie–Bohm theory.
Albert Einstein was a German-born theoretical physicist who developed the theory of relativity, one of the two pillars of modern physics. His work is also known for its influence on the philosophy of science. He is best known to the general public for his mass–energy equivalence formula E = mc2, which has been dubbed "the world's most famous equation". He received the 1921 Nobel Prize in Physics "for his services to theoretical physics, and especially for his discovery of the law of the photoelectric effect", a pivotal step in the development of quantum theory.
Boris Yakovlevich Podolsky was a Russian-American physicist of Russian Jewish descent, noted for his work with Albert Einstein and Nathan Rosen on entangled wave functions and the EPR paradox.
Nathan Rosen was a Jewish American-Israeli physicist noted for his study on the structure of the hydrogen atom and his work with Albert Einstein and Boris Podolsky on entangled wave functions and the EPR paradox. The Einstein–Rosen bridge, later named the wormhole, was a theory of Nathan Rosen.
Under the Copenhagen interpretation, quantum mechanics is non-deterministic, meaning that it generally does not predict the outcome of any measurement with certainty. Instead, it indicates what the probabilities of the outcomes are, with the indeterminism of observable quantities constrained by the uncertainty principle. The question arises whether there might be some deeper reality hidden beneath quantum mechanics, to be described by a more fundamental theory that can always predict the outcome of each measurement with certainty: if the exact properties of every subatomic particle were known the entire system could be modeled exactly using deterministic physics similar to classical physics.
The Copenhagen interpretation is an expression of the meaning of quantum mechanics that was largely devised from 1925 to 1927 by Niels Bohr and Werner Heisenberg. It remains one of the most commonly taught interpretations of quantum mechanics.
In quantum mechanics, the uncertainty principle is any of a variety of mathematical inequalities asserting a fundamental limit to the precision with which certain pairs of physical properties of a particle, known as complementary variables or canonically conjugate variables such as position x and momentum p, can be known.
In other words, it is conceivable that the standard interpretation of quantum mechanics is an incomplete description of nature. The designation of variables as underlying "hidden" variables depends on the level of physical description (so, for example, "if a gas is described in terms of temperature, pressure, and volume, then the velocities of the individual atoms in the gas would be hidden variables" [5] ). Physicists supporting De Broglie–Bohm theory maintain that underlying the observed probabilistic nature of the universe is a deterministic objective foundation/property—the hidden variable. Others, however, believe that there is no deeper deterministic reality in quantum mechanics.[ citation needed ]
A lack of a kind of realism (understood here as asserting independent existence and evolution of physical quantities, such as position or momentum, without the process of measurement) is crucial in the Copenhagen interpretation. Realistic interpretations (which were already incorporated, to an extent, into the physics of Feynman [6] ), on the other hand, assume that particles have certain trajectories. Under such view, these trajectories will almost always be continuous, which follows both from the finitude of the perceived speed of light ("leaps" should rather be precluded) and, more importantly, from the principle of least action, as deduced in quantum physics by Dirac. But continuous movement, in accordance with the mathematical definition, implies deterministic movement for a range of time arguments; [7] and thus realism is, under modern physics, one more reason for seeking (at least certain limited) determinism and thus a hidden variable theory (especially that such theory exists: see De Broglie–Bohm interpretation).
In metaphysics, realism about a given object is the view that this object exists in reality independently of our conceptual scheme. In philosophical terms, these objects are ontologically independent of someone's conceptual scheme, perceptions, linguistic practices, beliefs, etc.
In mathematics, the term "almost all" means "all but a negligible amount". More precisely, if X is a set, "almost all elements of X" means "all elements of X but those in a negligible subset of X". The meaning of "negligible" depends on the mathematical context; for instance, it can mean finite, countable, or null.
The de Broglie–Bohm theory, also known as the pilot wave theory, Bohmian mechanics, Bohm's interpretation, and the causal interpretation, is an interpretation of quantum mechanics. In addition to a wavefunction on the space of all possible configurations, it also postulates an actual configuration that exists even when unobserved. The evolution over time of the configuration is defined by the wave function by a guiding equation. The evolution of the wave function over time is given by the Schrödinger equation. The theory is named after Louis de Broglie (1892–1987) and David Bohm (1917–1992).
Although determinism was initially a major motivation for physicists looking for hidden variable theories, non-deterministic theories trying to explain what the supposed reality underlying the quantum mechanics formalism looks like are also considered hidden variable theories; for example Edward Nelson's stochastic mechanics.
Edward Nelson was a professor in the Mathematics Department at Princeton University. He was known for his work on mathematical physics and mathematical logic. In mathematical logic, he was noted especially for his internal set theory, and views on ultrafinitism and the consistency of arithmetic. In philosophy of mathematics he advocated the view of formalism rather than platonism or intuitionism. He also wrote on the relationship between religion and mathematics.
In June 1926, Max Born published a paper, "Zur Quantenmechanik der Stoßvorgänge" ("Quantum Mechanics of Collision Phenomena") in the scientific journal Zeitschrift für Physik , in which he was the first to clearly enunciate the probabilistic interpretation of the quantum wavefunction, which had been introduced by Erwin Schrödinger earlier in the year. Born concluded the paper as follows:
Here the whole problem of determinism comes up. From the standpoint of our quantum mechanics there is no quantity which in any individual case causally fixes the consequence of the collision; but also experimentally we have so far no reason to believe that there are some inner properties of the atom which conditions a definite outcome for the collision. Ought we to hope later to discover such properties ... and determine them in individual cases? Or ought we to believe that the agreement of theory and experiment—as to the impossibility of prescribing conditions for a causal evolution—is a pre-established harmony founded on the nonexistence of such conditions? I myself am inclined to give up determinism in the world of atoms. But that is a philosophical question for which physical arguments alone are not decisive.
Born's interpretation of the wavefunction was criticized by Schrödinger, who had previously attempted to interpret it in real physical terms, but Albert Einstein's response became one of the earliest and most famous assertions that quantum mechanics is incomplete:
Quantum mechanics is very worthy of regard. But an inner voice tells me that this is not yet the right track. The theory yields much, but it hardly brings us closer to the Old One's secrets. I, in any case, am convinced that He does not play dice. [8] [9]
Niels Bohr reportedly replied to Einstein's later expression of this sentiment by advising him to "stop telling God what to do." [10]
Shortly after making his famous "God does not play dice" comment, Einstein attempted to formulate a deterministic counterproposal to quantum mechanics, presenting a paper at a meeting of the Academy of Sciences in Berlin, on 5 May 1927, titled "Bestimmt Schrödinger's Wellenmechanik die Bewegung eines Systems vollständig oder nur im Sinne der Statistik?" ("Does Schrödinger's wave mechanics determine the motion of a system completely or only in the statistical sense?"). [11] However, as the paper was being prepared for publication in the academy's journal, Einstein decided to withdraw it, possibly because he discovered that, contrary to his intention, it implied non-separability of entangled systems, which he regarded as absurd. [12]
At the Fifth Solvay Congress, held in Belgium in October 1927 and attended by all the major theoretical physicists of the era, Louis de Broglie presented his own version of a deterministic hidden-variable theory, apparently unaware of Einstein's aborted attempt earlier in the year. In his theory, every particle had an associated, hidden "pilot wave" which served to guide its trajectory through space. The theory was subject to criticism at the Congress, particularly by Wolfgang Pauli, which de Broglie did not adequately answer. De Broglie abandoned the theory shortly thereafter.
Also at the Fifth Solvay Congress, Max Born and Werner Heisenberg made a presentation summarizing the recent tremendous theoretical development of quantum mechanics. At the conclusion of the presentation, they declared:
[W]hile we consider ... a quantum mechanical treatment of the electromagnetic field ... as not yet finished, we consider quantum mechanics to be a closed theory, whose fundamental physical and mathematical assumptions are no longer susceptible of any modification.... On the question of the 'validity of the law of causality' we have this opinion: as long as one takes into account only experiments that lie in the domain of our currently acquired physical and quantum mechanical experience, the assumption of indeterminism in principle, here taken as fundamental, agrees with experience. [13]
Although there is no record of Einstein responding to Born and Heisenberg during the technical sessions of the Fifth Solvay Congress, he did challenge the completeness of quantum mechanics during informal discussions over meals, presenting a thought experiment intended to demonstrate that quantum mechanics could not be entirely correct. He did likewise during the Sixth Solvay Congress held in 1930. Both times, Niels Bohr is generally considered to have successfully defended quantum mechanics by discovering errors in Einstein's arguments.
The debates between Bohr and Einstein essentially concluded in 1935, when Einstein finally expressed what is widely considered his best argument against the completeness of quantum mechanics. Einstein, Podolsky, and Rosen had proposed their definition of a "complete" description as one that uniquely determines the values of all its measurable properties. Einstein later summarized their argument as follows:
Consider a mechanical system consisting of two partial systems A and B which interact with each other only during a limited time. Let the ψ function [i.e., wavefunction ] before their interaction be given. Then the Schrödinger equation will furnish the ψ function after the interaction has taken place. Let us now determine the physical state of the partial system A as completely as possible by measurements. Then quantum mechanics allows us to determine the ψ function of the partial system B from the measurements made, and from the ψ function of the total system. This determination, however, gives a result which depends upon which of the physical quantities (observables) of A have been measured (for instance, coordinates or momenta). Since there can be only one physical state of B after the interaction which cannot reasonably be considered to depend on the particular measurement we perform on the system A separated from B it may be concluded that the ψ function is not unambiguously coordinated to the physical state. This coordination of several ψ functions to the same physical state of system B shows again that the ψ function cannot be interpreted as a (complete) description of a physical state of a single system. [14]
Bohr answered Einstein's challenge as follows:
[The argument of] Einstein, Podolsky and Rosen contains an ambiguity as regards the meaning of the expression "without in any way disturbing a system." ... [E]ven at this stage [i.e., the measurement of, for example, a particle that is part of an entangled pair], there is essentially the question of an influence on the very conditions which define the possible types of predictions regarding the future behavior of the system. Since these conditions constitute an inherent element of the description of any phenomenon to which the term "physical reality" can be properly attached, we see that the argumentation of the mentioned authors does not justify their conclusion that quantum-mechanical description is essentially incomplete." [15]
Bohr is here choosing to define a "physical reality" as limited to a phenomenon that is immediately observable by an arbitrarily chosen and explicitly specified technique, using his own special definition of the term 'phenomenon'. He wrote in 1948:
As a more appropriate way of expression, one may strongly advocate limitation of the use of the word phenomenon to refer exclusively to observations obtained under specified circumstances, including an account of the whole experiment." [16] [17]
This was, of course, in conflict with the definition used by the EPR paper, as follows:
If, without in any way disturbing a system, we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an element of physical reality corresponding to this physical quantity. [Italics in original] [3]
In 1964, John Bell showed through his famous theorem that if local hidden variables exist, certain experiments could be performed involving quantum entanglement where the result would satisfy a Bell inequality. If, on the other hand, statistical correlations resulting from quantum entanglement could not be explained by local hidden variables, the Bell inequality would be violated. Another no-go theorem concerning hidden variable theories is the Kochen–Specker theorem.
Physicists such as Alain Aspect and Paul Kwiat have performed experiments that have found violations of these inequalities up to 242 standard deviations [18] (excellent scientific certainty). This rules out local hidden variable theories, but does not rule out non-local ones. Theoretically, there could be experimental problems that affect the validity of the experimental findings.
Gerard 't Hooft has disputed the validity of Bell's theorem on the basis of the superdeterminism loophole and proposed some ideas to construct local deterministic models. [19]
Assuming the validity of Bell's theorem, any deterministic hidden-variable theory that is consistent with quantum mechanics would have to be non-local, maintaining the existence of instantaneous or faster-than-light relations (correlations) between physically separated entities. The currently best-known hidden-variable theory, the "causal" interpretation of the physicist and philosopher David Bohm, originally published in 1952, is a non-local hidden variable theory. Bohm unknowingly rediscovered (and extended) the idea that Louis de Broglie had proposed in 1927 (and abandoned) – hence this theory is commonly called "de Broglie-Bohm theory". Bohm posited both the quantum particle, e.g. an electron, and a hidden 'guiding wave' that governs its motion. Thus, in this theory electrons are quite clearly particles—when a double-slit experiment is performed, its trajectory goes through one slit rather than the other. Also, the slit passed through is not random but is governed by the (hidden) guiding wave, resulting in the wave pattern that is observed.
Such a view does not contradict the idea of local events that is used in both classical atomism and relativity theory as Bohm's theory (and quantum mechanics) are still locally causal (that is, information travel is still restricted to the speed of light) but allow nonlocal correlations. It points to a view of a more holistic, mutually interpenetrating and interacting world. Indeed, Bohm himself stressed the holistic aspect of quantum theory in his later years, when he became interested in the ideas of Jiddu Krishnamurti.
In Bohm's interpretation, the (nonlocal) quantum potential constitutes an implicate (hidden) order which organizes a particle, and which may itself be the result of yet a further implicate order: a superimplicate order which organizes a field. [20] Nowadays Bohm's theory is considered to be one of many interpretations of quantum mechanics which give a realist interpretation, and not merely a positivistic one, to quantum-mechanical calculations. Some consider it the simplest theory to explain quantum phenomena. [21] Nevertheless, it is a hidden variable theory, and necessarily so. [22] The major reference for Bohm's theory today is his book with Basil Hiley, published posthumously. [23]
A possible weakness of Bohm's theory is that some (including Einstein, Pauli, and Heisenberg) feel that it looks contrived. [24] (Indeed, Bohm thought this of his original formulation of the theory. [25] ) It was deliberately designed to give predictions that are in all details identical to conventional quantum mechanics. [25] Bohm's original aim was not to make a serious counterproposal but simply to demonstrate that hidden-variable theories are indeed possible. [25] (It thus provided a supposed counterexample to the famous proof by John von Neumann that was generally believed to demonstrate that no deterministic theory reproducing the statistical predictions of quantum mechanics is possible.) Bohm said he considered his theory to be unacceptable as a physical theory due to the guiding wave's existence in an abstract multi-dimensional configuration space, rather than three-dimensional space. [25] His hope was that the theory would lead to new insights and experiments that would lead ultimately to an acceptable one; [25] his aim was not to set out a deterministic, mechanical viewpoint, but rather to show that it was possible to attribute properties to an underlying reality, in contrast to the conventional approach to quantum mechanics. [26]
In August 2011, Roger Colbeck and Renato Renner published a proof that any extension of quantum mechanical theory, whether using hidden variables or otherwise, cannot provide a more accurate prediction of outcomes, assuming that observers can freely choose the measurement settings. [27] Colbeck and Renner write: "In the present work, we have ... excluded the possibility that any extension of quantum theory (not necessarily in the form of local hidden variables) can help predict the outcomes of any measurement on any quantum state. In this sense, we show the following: under the assumption that measurement settings can be chosen freely, quantum theory really is complete".
In January 2013, GianCarlo Ghirardi and Raffaele Romano described a model which, "under a different free choice assumption [...] violates [the statement by Colbeck and Renner] for almost all states of a bipartite two-level system, in a possibly experimentally testable way". [28]
The Einstein–Podolsky–Rosen paradox is a thought experiment proposed by physicists Albert Einstein, Boris Podolsky and Nathan Rosen (EPR) that they interpreted as indicating that the explanation of physical reality provided by Quantum Mechanics was incomplete. In a 1935 paper titled Can Quantum-Mechanical Description of Physical Reality be Considered Complete?, they attempted to mathematically show that the wave function does not contain complete information about physical reality, and hence the Copenhagen interpretation is unsatisfactory; resolutions of the paradox have important implications for the interpretation of quantum mechanics.
The mathematical formulations of quantum mechanics are those mathematical formalisms that permit a rigorous description of quantum mechanics. Such are distinguished from mathematical formalisms for theories developed prior to the early 1900s by the use of abstract mathematical structures, such as infinite-dimensional Hilbert spaces and operators on these spaces. Many of these structures are drawn from functional analysis, a research area within pure mathematics that was influenced in part by the needs of quantum mechanics. In brief, values of physical observables such as energy and momentum were no longer considered as values of functions on phase space, but as eigenvalues; more precisely as spectral values of linear operators in Hilbert space.
Schrödinger's cat is a thought experiment, sometimes described as a paradox, devised by Austrian physicist Erwin Schrödinger in 1935. It illustrates what he saw as the problem of the Copenhagen interpretation of quantum mechanics applied to everyday objects. The scenario presents a hypothetical cat that may be simultaneously both alive and dead, a state known as a quantum superposition, as a result of being linked to a random subatomic event that may or may not occur.
Wave–particle duality is the concept in quantum mechanics that every particle or quantum entity may be partly described in terms not only of particles, but also of waves. It expresses the inability of the classical concepts "particle" or "wave" to fully describe the behaviour of quantum-scale objects. As Albert Einstein wrote:
It seems as though we must use sometimes the one theory and sometimes the other, while at times we may use either. We are faced with a new kind of difficulty. We have two contradictory pictures of reality; separately neither of them fully explains the phenomena of light, but together they do.
In quantum mechanics, counterfactual definiteness (CFD) is the ability to speak "meaningfully" of the definiteness of the results of measurements that have not been performed. The term "counterfactual definiteness" is used in discussions of physics calculations, especially those related to the phenomenon called quantum entanglement and those related to the Bell inequalities. In such discussions "meaningfully" means the ability to treat these unmeasured results on an equal footing with measured results in statistical calculations. It is this aspect of counterfactual definiteness that is of direct relevance to physics and mathematical models of physical systems and not philosophical concerns regarding the meaning of unmeasured results.
Louis Victor Pierre Raymond de Broglie, duc de Broglie was a French physicist who made groundbreaking contributions to quantum theory. In his 1924 PhD thesis, he postulated the wave nature of electrons and suggested that all matter has wave properties. This concept is known as the de Broglie hypothesis, an example of wave–particle duality, and forms a central part of the theory of quantum mechanics.
An interpretation of quantum mechanics is an attempt to explain how the mathematical theory of quantum mechanics "corresponds" to reality. Although quantum mechanics has held up to rigorous and extremely precise tests in an extraordinarily broad range of experiments, there exist a number of contending schools of thought over their interpretation.
Quantum indeterminacy is the apparent necessary incompleteness in the description of a physical system, that has become one of the characteristics of the standard description of quantum physics. Prior to quantum physics, it was thought that
Matter waves are a central part of the theory of quantum mechanics, being an example of wave–particle duality. All matter can exhibit wave-like behavior. For example, a beam of electrons can be diffracted just like a beam of light or a water wave. The concept that matter behaves like a wave was proposed by Louis de Broglie in 1924. It is also referred to as the de Broglie hypothesis. Matter waves are referred to as de Broglie waves.
In physics, action at a distance is the concept that an object can be moved, changed, or otherwise affected without being physically touched by another object. That is, it is the nonlocal interaction of objects that are separated in space.
The Bohr–Einstein debates were a series of public disputes about quantum mechanics between Albert Einstein and Niels Bohr. Their debates are remembered because of their importance to the philosophy of science. An account of the debates was written by Bohr in an article titled "Discussions with Einstein on Epistemological Problems in Atomic Physics". Despite their differences of opinion regarding quantum mechanics, Bohr and Einstein had a mutual admiration that was to last the rest of their lives.
In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal and non-relativistic.
In physics, complementarity is both a theoretical and an experimental result of quantum mechanics, also referred to as principle of complementarity. Formulated by Niels Bohr, a leading founder of quantum mechanics, the complementarity principle holds that objects have certain pairs of complementary properties which cannot all be observed or measured simultaneously.
The ensemble interpretation of quantum mechanics considers the quantum state description to apply only to an ensemble of similarly prepared systems, rather than supposing that it exhaustively represents an individual physical system.
In theoretical physics, quantum nonlocality is a characteristic of some measurements made at a microscopic level that contradict the assumptions of local realism found in classical mechanics. Despite consideration of hidden variables as a possible resolution of this contradiction, some aspects of entangled quantum states have been demonstrated irreproducible by any local hidden variable theory. Bell's theorem is one such demonstration which has been verified by experiment.
The relational approach to quantum physics is an alternative approach to and interpretation of quantum mechanics. It asserts that the physical world can only be studied accurately in terms of relationships between systems, as all experimentally verifiable facts about the world result explicitly from interactions. According to the relational approach, the assumption that objects possess absolute properties inevitably leads to ambiguities and paradoxes when these objects are studied closely. The approach was adopted, in a time span of 1992-1996, by Q. Zheng, S. Hughes, and T. Kobayashi in the University of Tokyo. As early as in 1985, S. Kochen suggested that the paradoxes of quantum physics could be overcome by developing a relational approach, which was needed at one time to solve the paradoxes of relativistic physics of space and time. It is also hoped that this entry will serve as a complement to Rovelli’s relational quantum mechanics (RQM).
Quantum non-equilibrium is a concept within stochastic formulations of the De Broglie–Bohm theory of quantum physics.