Timeline of quantum computing

Last updated

This is a timeline of quantum computing .

Contents

1960s

1970s

1980s

1990s

2000s

2005

2006

2007

2008

2009

2010s

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020s


Content copied from 2020 in science

See also

Related Research Articles

Quantum computing Study of a model of computation

Quantum computing is the use of quantum-mechanical phenomena such as superposition and entanglement to perform computation. Computers that perform quantum computations are known as quantum computers. Quantum computers are believed to be able to solve certain computational problems, such as integer factorization, substantially faster than classical computers. The study of quantum computing is a subfield of quantum information science.

Quantum teleportation is a process in which quantum information can be transmitted from one location to another, with the help of classical communication and previously shared quantum entanglement between the sending and receiving location. Because it depends on classical communication, which can proceed no faster than the speed of light, it cannot be used for faster-than-light transport or communication of classical bits. While it has proven possible to teleport one or more qubits of information between two (entangled) quanta, this has not yet been achieved between anything larger than molecules.

Quantum entanglement Correlation between measurements of quantum subsystems, even when spatially separated

Quantum entanglement is a physical phenomenon that occurs when a pair or group of particles is generated, interact, or share spatial proximity in a way such that the quantum state of each particle of the pair or group cannot be described independently of the state of the others, including when the particles are separated by a large distance. The topic of quantum entanglement is at the heart of the disparity between classical and quantum physics: entanglement is a primary feature of quantum mechanics lacking in classical mechanics.

Trapped ion quantum computer Proposed quantum computer implementation

A trapped ion quantum computer is one proposed approach to a large-scale quantum computer. Ions, or charged atomic particles, can be confined and suspended in free space using electromagnetic fields. Qubits are stored in stable electronic states of each ion, and quantum information can be transferred through the collective quantized motion of the ions in a shared trap. Lasers are applied to induce coupling between the qubit states or coupling between the internal qubit states and the external motional states.

Quantum networks form an important element of quantum computing and quantum communication systems. Quantum networks facilitate the transmission of information in the form of quantum bits, also called qubits, between physically separated quantum processors. A quantum processor is a small quantum computer being able to perform quantum logic gates on a certain number of qubits. Quantum networks work in a similar way to classical networks. The main difference is that quantum networking, like quantum computing, is better at solving certain problems, such as modeling quantum systems.

D-Wave Systems Canadian Quantum Computing Company

D-Wave Systems, Inc. is a Canadian quantum computing company, based in Burnaby, British Columbia, Canada. D-Wave was the world's first company to sell computers to exploit quantum effects in their operation. D-Wave's early customers include Lockheed Martin, University of Southern California, Google/NASA and Los Alamos National Lab.

A quantum bus is a device which can be used to store or transfer information between independent qubits in a quantum computer, or combine two qubits into a superposition. It is the quantum analog of a classical bus.

The one-way or measurement based quantum computer (MBQC) is a method of quantum computing that first prepares an entangled resource state, usually a cluster state or graph state, then performs single qubit measurements on it. It is "one-way" because the resource state is destroyed by the measurements.

In quantum information and quantum computing, a cluster state is a type of highly entangled state of multiple qubits. Cluster states are generated in lattices of qubits with Ising type interactions. A cluster C is a connected subset of a d-dimensional lattice, and a cluster state is a pure state of the qubits located on C. They are different from other types of entangled states such as GHZ states or W states in that it is more difficult to eliminate quantum entanglement in the case of cluster states. Another way of thinking of cluster states is as a particular instance of graph states, where the underlying graph is a connected subset of a d-dimensional lattice. Cluster states are especially useful in the context of the one-way quantum computer. For a comprehensible introduction to the topic see.

Yoshihisa Yamamoto (scientist) Japanese applied physicist (born 1950)

Yoshihisa Yamamoto is an applied physicist and the director of Physics & Informatics Laboratories, NTT Research, Inc. He is also Professor (Emeritus) at Stanford University and National Institute of Informatics (Tokyo).

Quantum simulator Simulators of quantum mechanical systems

Quantum simulators permit the study of quantum systems that are difficult to study in the laboratory and impossible to model with a supercomputer. In this instance, simulators are special purpose devices designed to provide insight about specific physics problems. Quantum simulators may be contrasted with generally programmable "digital" quantum computers, which would be capable of solving a wider class of quantum problems.

In quantum mechanics, the cat state, named after Schrödinger's cat, is a quantum state that is composed of two diametrically opposed conditions at the same time, such as the possibilities that a cat be alive and dead at the same time. Schrödinger's cat is sometimes connected to the many worlds hypothesis by its proponents.

Christopher Monroe American physicist

Christopher Roy Monroe is an American physicist, an experimentalist in the areas of atomic, molecular, and optical physics and quantum information science. He directs one of the leading research efforts in ion traps and quantum optics. Monroe is the Bice Zorn Professor and a Distinguished Professor of Physics at the University of Maryland and Fellow of the Joint Quantum Institute.

Linear Optical Quantum Computing or Linear Optics Quantum Computation (LOQC) is a paradigm of quantum computation, allowing universal quantum computation. LOQC uses photons as information carriers, mainly uses linear optical elements, or optical instruments to process quantum information, and uses photon detectors and quantum memories to detect and store quantum information.

Jean-Michel Raimond is a French physicist working in the field of quantum mechanics.

David P. DiVincenzo is an American theoretical physicist. He is the director of the Institute of Theoretical Nanoelectronics at the Peter Grünberg Institute in Jülich and Professor at the Institute for Quantum Information at RWTH Aachen University. With Daniel Loss, he proposed the Loss-DiVincenzo quantum computer in 1997, which would use electron spins in quantum dots as qubits.

The DiVincenzo criteria are conditions necessary for constructing a quantum computer, conditions proposed in 2000 by the theoretical physicist David P. DiVincenzo, as being those necessary to construct such a computer—a computer first proposed by mathematician Yuri Manin, in 1980, and physicist Richard Feynman, in 1982—as a means to efficiently simulate quantum systems, such as in solving the quantum many-body problem.

In quantum computing, quantum supremacy is the goal of demonstrating that a programmable quantum device can solve a problem that no classical computer can solve in any feasible amount of time. By comparison, the weaker quantum advantage is the demonstration that a quantum device can solve a problem merely faster than classical computers. Conceptually, quantum supremacy involves both the engineering task of building a powerful quantum computer and the computational-complexity-theoretic task of finding a problem that can be solved by that quantum computer and has a superpolynomial speedup over the best known or possible classical algorithm for that task. The term was originally popularized by John Preskill but the concept of a quantum computational advantage, specifically for simulating quantum systems, dates back to Yuri Manin's (1980) and Richard Feynman's (1981) proposals of quantum computing.

In quantum computing, a qubit is a unit of information analogous to a bit in classical computing, but it is affected by quantum mechanical properties such as superposition and entanglement which allow qubits to be in some ways more powerful than classical bits for some tasks. Qubits are used in quantum circuits and quantum algorithms composed of quantum logic gates to solve computational problems, where they are used for input/output and intermediate computations.

In quantum computing, quantum memory is the quantum-mechanical version of ordinary computer memory. Whereas ordinary memory stores information as binary states, quantum memory stores a quantum state for later retrieval. These states hold useful computational information known as qubits. Unlike the classical memory of everyday computers, the states stored in quantum memory can be in a quantum superposition, giving much more practical flexibility in quantum algorithms than classical information storage.

References

  1. Bassard, Gilles (October 17, 2005). "Brief History of Quantum Cryptography: A Personal Perspective". arXiv: quant-ph/0604072 .Cite journal requires |journal= (help)
  2. Park, James (1970). "The concept of transition in quantum mechanics". Foundations of Physics . 1 (1): 23–33. Bibcode:1970FoPh....1...23P. CiteSeerX   10.1.1.623.5267 . doi:10.1007/BF00708652.
  3. Bennett, C. (November 1973). "Logical Reversibility of Computation" (PDF). IBM Journal of Research and Development. 17 (6): 525–532. doi:10.1147/rd.176.0525.
  4. Poplavskii, R.P (1975). "Thermodynamical models of information processing". Uspekhi Fizicheskikh Nauk (in Russian). 115 (3): 465–501. doi:10.3367/UFNr.0115.197503d.0465.
  5. Benioff, Paul (1980). "The computer as a physical system: A microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines". Journal of Statistical Physics. 22 (5): 563–591. Bibcode:1980JSP....22..563B. doi:10.1007/bf01011339.
  6. Manin, Yu I (1980). Vychislimoe i nevychislimoe (Computable and Noncomputable) (in Russian). Sov. Radio. pp. 13–15. Archived from the original on May 10, 2013. Retrieved March 4, 2013.
  7. Technical Report MIT/LCS/TM-151 (1980) and an adapted and condensed version: Toffoli, Tommaso (1980). J. W. de Bakker and J. van Leeuwen (ed.). Reversible computing (PDF). Automata, Languages and Programming, Seventh Colloquium. Noordwijkerhout, Netherlands: Springer Verlag. pp. 632–644. doi:10.1007/3-540-10003-2_104. ISBN   3-540-10003-2. Archived from the original (PDF) on April 15, 2010.
  8. Benioff, Paul A. (April 1, 1982). "Quantum mechanical Hamiltonian models of discrete processes that erase their own histories: Application to Turing machines". International Journal of Theoretical Physics. 21 (3): 177–201. Bibcode:1982IJTP...21..177B. doi:10.1007/BF01857725. ISSN   1572-9575.
  9. Simulating physics with computers https://web.archive.org/web/20190830190404/https://people.eecs.berkeley.edu/~christos/classics/Feynman.pdf
  10. Benioff, P. (1982). "Quantum mechanical hamiltonian models of turing machines". Journal of Statistical Physics. 29 (3): 515–546. Bibcode:1982JSP....29..515B. doi:10.1007/BF01342185.
  11. Wootters, W. K.; Zurek, W. H. (1982). "A single quantum cannot be cloned". Nature. 299 (5886): 802–803. Bibcode:1982Natur.299..802W. doi:10.1038/299802a0.
  12. Dieks, D. (1982). "Communication by EPR devices". Physics Letters A. 92 (6): 271–272. Bibcode:1982PhLA...92..271D. CiteSeerX   10.1.1.654.7183 . doi:10.1016/0375-9601(82)90084-6.
  13. Bennett, Charles H.; Brassard, Gilles (1984). "Quantum cryptography: Public key distribution and coin tossing". Theoretical Computer Science. Theoretical Aspects of Quantum Cryptography – celebrating 30 years of BB84. 560: 7–11. doi: 10.1016/j.tcs.2014.05.025 . ISSN   0304-3975.
  14. K. Igeta and Y. Yamamoto. "Quantum mechanical computers with single atom and photon fields." International Quantum Electronics Conference (1988) https://www.osapublishing.org/abstract.cfm?uri=IQEC-1988-TuI4
  15. G. J. Milburn. "Quantum optical Fredkin gate." Physical Review Letters 62, 2124 (1989) https://doi.org/10.1103/PhysRevLett.62.2124
  16. Ray, P.; Chakrabarti, B. K.; Chakrabarti, Arunava (1989). "Sherrington-Kirkpatrick model in a transverse field: Absence of replica symmetry breaking due to quantum fluctuations". Physical Review B. 39 (16): 11828–11832. Bibcode:1989PhRvB..3911828R. doi:10.1103/PhysRevB.39.11828. PMID   9948016.
  17. Das, A.; Chakrabarti, B. K. (2008). "Quantum Annealing and Analog Quantum Computation". Rev. Mod. Phys. 80 (3): 1061–1081. arXiv: 0801.2193 . Bibcode:2008RvMP...80.1061D. CiteSeerX   10.1.1.563.9990 . doi:10.1103/RevModPhys.80.1061.
  18. Deutsch, David (1985). "Quantum theory, the Church-Turing principle and the universal quantum computer". Proceedings of the Royal Society A. 400 (1818): 97. Bibcode:1985RSPSA.400...97D. doi:10.1098/rspa.1985.0070.
  19. Ekert, A. K (1991). "Quantum cryptography based on Bell's theorem". Phys. Rev. Lett. 67 (6): 661–663. Bibcode:1991PhRvL..67..661E. doi:10.1103/PhysRevLett.67.661. PMID   10044956.
  20. Isaac L. Chuang and Yoshihisa Yamamoto. "Simple quantum computer." Physical Review A 52, 3489 (1995)
  21. W.Shor, Peter (1995). "Scheme for reducing decoherence in quantum computer memory". Physical Review A. 52 (4): R2493–R2496. Bibcode:1995PhRvA..52.2493S. doi:10.1103/PhysRevA.52.R2493. PMID   9912632.
  22. Monroe, C; Meekhof, D. M; King, B. E; Itano, W. M; Wineland, D. J (December 18, 1995). "Demonstration of a Fundamental Quantum Logic Gate" (PDF). Physical Review Letters. 75 (25): 4714–4717. Bibcode:1995PhRvL..75.4714M. doi:10.1103/PhysRevLett.75.4714. PMID   10059979 . Retrieved December 29, 2007.
  23. Steane, Andrew (1996). "Multiple-Particle Interference and Quantum Error Correction". Proc. Roy. Soc. Lond. A. 452 (1954): 2551–2577. arXiv: quant-ph/9601029 . Bibcode:1996RSPSA.452.2551S. doi:10.1098/rspa.1996.0136.
  24. DiVincenzo, David P (1996). "Topics in Quantum Computers". arXiv: cond-mat/9612126 . Bibcode:1996cond.mat.12126D.
  25. A. Yu. Kitaev (2003). "Fault-tolerant quantum computation by anyons". Annals of Physics. 303 (1): 2–30. arXiv: quant-ph/9707021 . Bibcode:2003AnPhy.303....2K. doi:10.1016/S0003-4916(02)00018-0.
  26. D. Loss and D. P. DiVincenzo, "Quantum computation with quantum dots", Phys. Rev. A57, p120 (1998); on arXiv.org in Jan. 1997
  27. Chuang, Isaac L.; Gershenfeld, Neil; Kubinec, Mark (April 13, 1998). "Experimental Implementation of Fast Quantum Searching". Physical Review Letters. 80 (15): 3408–3411. Bibcode:1998PhRvL..80.3408C. doi:10.1103/PhysRevLett.80.3408.
  28. Kane, B. E. (May 14, 1998). "A silicon-based nuclear spin quantum computer". Nature. 393 (6681): 133–137. Bibcode:1998Natur.393..133K. doi:10.1038/30156. ISSN   0028-0836.
  29. Gottesman, Daniel (1999). "The Heisenberg Representation of Quantum Computers". In S. P. Corney; R. Delbourgo; P. D. Jarvis (eds.). Proceedings of the Xxii International Colloquium on Group Theoretical Methods in Physics. 22. Cambridge, MA: International Press. pp. 32–43. arXiv: quant-ph/9807006v1 . Bibcode:1998quant.ph..7006G.
  30. Braunstein, S. L; Caves, C. M; Jozsa, R; Linden, N; Popescu, S; Schack, R (1999). "Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing". Physical Review Letters. 83 (5): 1054–1057. arXiv: quant-ph/9811018 . Bibcode:1999PhRvL..83.1054B. doi:10.1103/PhysRevLett.83.1054.
  31. Y. Nakamura, Yu. A. Pashkin and J. S. Tsai. "Coherent control of macroscopic quantum states in a single-Cooper-pair box." Nature 398, 786–788 (1999) https://doi.org/10.1038/19718
  32. Linden, Noah; Popescu, Sandu (2001). "Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation?". Physical Review Letters. 87 (4): 047901. arXiv: quant-ph/9906008 . Bibcode:2001PhRvL..87d7901L. doi:10.1103/PhysRevLett.87.047901. PMID   11461646.
  33. Raussendorf, R; Briegel, H. J (2001). "A One-Way Quantum Computer". Physical Review Letters . 86 (22): 5188–91. Bibcode:2001PhRvL..86.5188R. CiteSeerX   10.1.1.252.5345 . doi:10.1103/PhysRevLett.86.5188. PMID   11384453.
  34. n.d. Institute for Quantum Computing "Quick Facts". May 15, 2013. Retrieved July 26, 2016.
  35. Gulde, S; Riebe, M; Lancaster, G. P. T; Becher, C; Eschner, J; Häffner, H; Schmidt-Kaler, F; Chuang, I. L; Blatt, R (January 2, 2003). "Implementation of the Deutsch–Jozsa algorithm on an ion-trap quantum computer". Nature . 421 (6918): 48–50. Bibcode:2003Natur.421...48G. doi:10.1038/nature01336. PMID   12511949.
  36. Pittman, T. B.; Fitch, M. J.; Jacobs, B. C; Franson, J. D. (2003). "Experimental controlled-not logic gate for single photons in the coincidence basis". Phys. Rev. A. 68 (3): 032316. arXiv: quant-ph/0303095 . Bibcode:2003PhRvA..68c2316P. doi:10.1103/physreva.68.032316.
  37. O'Brien, J. L.; Pryde, G. J.; White, A. G.; Ralph, T. C.; Branning, D. (2003). "Demonstration of an all-optical quantum controlled-NOT gate". Nature. 426 (6964): 264–267. arXiv: quant-ph/0403062 . Bibcode:2003Natur.426..264O. doi:10.1038/nature02054. PMID   14628045.
  38. Schmidt-Kaler, F; Häffner, H; Riebe, M; Gulde, S; Lancaster, G. P. T; Deutschle, T; Becher, C; Roos, C. F; Eschner, J; Blatt, R (March 27, 2003). "Realization of the Cirac-Zoller controlled-NOT quantum gate". Nature . 422 (6930): 408–411. Bibcode:2003Natur.422..408S. doi:10.1038/nature01494. PMID   12660777.
  39. Riebe, M; Häffner, H; Roos, C. F; Hänsel, W; Benhelm, J; Lancaster, G. P. T; Körber, T. W; Becher, C; Schmidt-Kaler, F; James, D. F. V; Blatt, R (June 17, 2004). "Deterministic quantum teleportation with atoms". Nature . 429 (6993): 734–737. Bibcode:2004Natur.429..734R. doi:10.1038/nature02570. PMID   15201903.
  40. Zhao, Z; Chen, Y. A; Zhang, A. N; Yang, T; Briegel, H. J; Pan, J. W (2004). "Experimental demonstration of five-photon entanglement and open-destination teleportation". Nature. 430 (6995): 54–58. arXiv: quant-ph/0402096 . Bibcode:2004Natur.430...54Z. doi:10.1038/nature02643. PMID   15229594.
  41. Dumé, Belle (November 22, 2005). "Breakthrough for quantum measurement". PhysicsWeb. Retrieved August 10, 2018.
  42. Häffner, H; Hänsel, W; Roos, C. F; Benhelm, J; Chek-Al-Kar, D; Chwalla, M; Körber, T; Rapol, U. D; Riebe, M; Schmidt, P. O; Becher, C; Gühne, O; Dür, W; Blatt, R (December 1, 2005). "Scalable multiparticle entanglement of trapped ions". Nature. 438 (7068): 643–646. arXiv: quant-ph/0603217 . Bibcode:2005Natur.438..643H. doi:10.1038/nature04279. PMID   16319886.
  43. January 4, 2006 University of Oxford "Bang-bang: a step closer to quantum supercomputers" . Retrieved December 29, 2007.
  44. Dowling, Jonathan P. (2006). "To Compute or Not to Compute?". Nature. 439 (7079): 919–920. Bibcode:2006Natur.439..919D. doi:10.1038/439919a. PMID   16495978.
  45. Belle Dumé (February 23, 2007). "Entanglement heats up". Physics World. Archived from the original on October 19, 2007.
  46. February 16, 2006 University of York "Captain Kirk's clone and the eavesdropper" (Press release). Archived from the original on February 7, 2007. Retrieved December 29, 2007.
  47. March 24, 2006 Soft Machines "The best of both worlds – organic semiconductors in inorganic nanostructures" . Retrieved May 20, 2010.
  48. June 8, 2010 New Scientist Tom Simonite. "Error-check breakthrough in quantum computing" . Retrieved May 20, 2010.
  49. May 8, 2006 ScienceDaily "12-qubits Reached In Quantum Information Quest" . Retrieved May 20, 2010.
  50. July 7, 2010 New Scientist Tom Simonite. "Flat 'ion trap' holds quantum computing promise" . Retrieved May 20, 2010.
  51. July 12, 2006 PhysOrg.com Luerweg, Frank. "Quantum Computer: Laser tweezers sort atoms". Archived from the original on December 15, 2007. Retrieved December 29, 2007.
  52. August 16, 2006 New Scientist "'Electron-spin' trick boosts quantum computing". Archived from the original on November 22, 2006. Retrieved December 29, 2007.
  53. August 16, 2006 NewswireToday Michael Berger. "Quantum Dot Molecules – One Step Further Towards Quantum Computing" . Retrieved December 29, 2007.
  54. September 7, 2006 PhysOrg.com "Spinning new theory on particle spin brings science closer to quantum computing". Archived from the original on January 17, 2008. Retrieved December 29, 2007.
  55. October 4, 2006 New Scientist Merali, Zeeya (2006). "Spooky steps to a quantum network". New Scientist. 192 (2572): 12. doi:10.1016/s0262-4079(06)60639-8 . Retrieved December 29, 2007.
  56. October 24, 2006 PhysOrg.com Lisa Zyga. "Scientists present method for entangling macroscopic objects". Archived from the original on October 13, 2007. Retrieved December 29, 2007.
  57. November 2, 2006 University of Illinois at Urbana–Champaign James E. Kloeppel. "Quantum coherence possible in incommensurate electronic systems" . Retrieved August 19, 2010.
  58. November 19, 2006 PhysOrg.com "A Quantum (Computer) Step: Study Shows It's Feasible to Read Data Stored as Nuclear 'Spins'". Archived from the original on September 29, 2007. Retrieved December 29, 2007.
  59. January 8, 2007 New Scientist Jeff Hecht. "Nanoscopic 'coaxial cable' transmits light" . Retrieved December 30, 2007.
  60. February 21, 2007 The Engineer "Toshiba unveils quantum security" . Retrieved December 30, 2007.
  61. Lu, Chao-Yang; Zhou, Xiao-Qi; Gühne, Otfried; Gao, Wei-Bo; Zhang, Jin; Yuan, Zhen-Sheng; Goebel, Alexander; Yang, Tao; Pan, Jian-Wei (2007). "Experimental entanglement of six photons in graph states". Nature Physics. 3 (2): 91–95. arXiv: quant-ph/0609130 . Bibcode:2007NatPh...3...91L. doi:10.1038/nphys507.
  62. March 15, 2007 New Scientist Zeeya Merali. "The universe is a string-net liquid" . Retrieved December 30, 2007.
  63. March 12, 2007 Max Planck Society "A Single-Photon Server with Just One Atom" (Press release). Retrieved December 30, 2007.
  64. April 18, 2007 PhysOrg.com Miranda Marquit. "First use of Deutsch's Algorithm in a cluster state quantum computer". Archived from the original on January 17, 2008. Retrieved December 30, 2007.
  65. April 19, 2007 Electronics Weekly Steve Bush. "Cambridge team closer to working quantum computer". Archived from the original on May 15, 2012. Retrieved December 30, 2007.
  66. May 7, 2007 Wired Cyrus Farivar (May 7, 2007). "It's the "Wiring" That's Tricky in Quantum Computing". Wired. Archived from the original on July 6, 2008. Retrieved December 30, 2007.
  67. May 8, 2007 Media-Newswire.com "NEC, JST, and RIKEN Successfully Demonstrate World's First Controllably Coupled Qubits" (Press release). Retrieved December 30, 2007.
  68. May 16, 2007 Scientific American JR Minkel. "Spintronics Breaks the Silicon Barrier" . Retrieved December 30, 2007.
  69. May 22, 2007 PhysOrg.com Lisa Zyga. "Scientists demonstrate quantum state exchange between light and matter". Archived from the original on March 7, 2008. Retrieved December 30, 2007.
  70. June 1, 2007 Science Dutt, M. V; Childress, L; Jiang, L; Togan, E; Maze, J; Jelezko, F; Zibrov, A. S; Hemmer, P. R; Lukin, M. D (2007). "Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond". Science. 316 (5829): 1312–6. Bibcode:2007Sci...316.....D. doi:10.1126/science.1139831. PMID   17540898.
  71. June 14, 2007 Nature Plantenberg, J. H.; De Groot, P. C.; Harmans, C. J. P. M.; Mooij, J. E. (2007). "Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits". Nature. 447 (7146): 836–839. Bibcode:2007Natur.447..836P. doi:10.1038/nature05896. PMID   17568742.
  72. June 17, 2007 New Scientist Mason Inman. "Atom trap is a step towards a quantum computer" . Retrieved December 30, 2007.
  73. June 29, 2007 Nanowerk.com "Can nuclear qubits point the way?" . Retrieved December 30, 2007.
  74. July 27, 2007 ScienceDaily "Discovery Of 'Hidden' Quantum Order Improves Prospects For Quantum Super Computers" . Retrieved December 30, 2007.
  75. July 23, 2007 PhysOrg.com Miranda Marquit. "Indium arsenide may provide clues to quantum information processing". Archived from the original on September 26, 2007. Retrieved December 30, 2007.
  76. July 25, 2007 National Institute of Standards and Technology "Thousands of Atoms Swap 'Spins' with Partners in Quantum Square Dance". Archived from the original on December 18, 2007. Retrieved December 30, 2007.
  77. August 15, 2007 PhysOrg.com Lisa Zyga. "Ultrafast quantum computer uses optically controlled electrons". Archived from the original on January 2, 2008. Retrieved December 30, 2007.
  78. August 15, 2007 Electronics Weekly Steve Bush. "Research points way to qubits on standard chips" . Retrieved December 30, 2007.
  79. August 17, 2007 ScienceDaily "Computing Breakthrough Could Elevate Security To Unprecedented Levels" . Retrieved December 30, 2007.
  80. August 21, 2007 New Scientist Stephen Battersby. "Blueprints drawn up for quantum computer RAM" . Retrieved December 30, 2007.
  81. August 26, 2007 PhysOrg.com "Photon-transistors for the supercomputers of the future". Archived from the original on January 1, 2008. Retrieved December 30, 2007.
  82. September 5, 2007 University of Michigan "Physicists establish "spooky" quantum communication". Archived from the original on December 28, 2007. Retrieved December 30, 2007.
  83. September 13, 2007 huliq.com "Qubits poised to reveal our secrets" . Retrieved December 30, 2007.
  84. September 26, 2007 New Scientist Saswato Das. "Quantum chip rides on superconducting bus" . Retrieved December 30, 2007.
  85. September 27, 2007 ScienceDaily "Superconducting Quantum Computing Cable Created" . Retrieved December 30, 2007.
  86. October 11, 2007 Electronics Weekly Steve Bush. "Qubit transmission signals quantum computing advance". Archived from the original on October 12, 2007. Retrieved December 30, 2007.
  87. October 8, 2007 TG Daily Rick C. Hodgin. "New material breakthrough brings quantum computers one step closer". Archived from the original on December 12, 2007. Retrieved December 30, 2007.
  88. October 19, 2007 Optics.org "Single electron-spin memory with a semiconductor quantum dot" . Retrieved December 30, 2007.
  89. November 7, 2007 New Scientist Stephen Battersby. "'Light trap' is a step towards quantum memory" . Retrieved December 30, 2007.
  90. November 12, 2007 Nanowerk.com "World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference" . Retrieved December 30, 2007.
  91. December 12, 2007 PhysOrg.com "Desktop device generates and traps rare ultracold molecules". Archived from the original on December 15, 2007. Retrieved December 31, 2007.
  92. December 19, 2007 University of Toronto Kim Luke. "U of T scientists make quantum computing leap Research is step toward building first quantum computers". Archived from the original on December 28, 2007. Retrieved December 31, 2007.
  93. February 18, 2007 www.nature.com (journal) Trauzettel, Björn; Bulaev, Denis V.; Loss, Daniel; Burkard, Guido (2007). "Spin qubits in graphene quantum dots". Nature Physics. 3 (3): 192–196. arXiv: cond-mat/0611252 . Bibcode:2007NatPh...3..192T. doi:10.1038/nphys544.
  94. January 15, 2008 Miranda Marquit. "Graphene quantum dot may solve some quantum computing problems". Archived from the original on January 17, 2008. Retrieved January 16, 2008.
  95. January 25, 2008 EETimes Europe. "Scientists succeed in storing quantum bit" . Retrieved February 5, 2008.
  96. February 26, 2008 Lisa Zyga. "Physicists demonstrate qubit-qutrit entanglement". Archived from the original on February 29, 2008. Retrieved February 27, 2008.
  97. February 26, 2008 ScienceDaily. "Analog logic for quantum computing" . Retrieved February 27, 2008.
  98. March 5, 2008 Zenaida Gonzalez Kotala. "Future 'quantum computers' will offer increased efficiency... and risks" . Retrieved March 5, 2008.
  99. March 6, 2008 Ray Kurzweil. "Entangled memory is a first" . Retrieved March 8, 2008.
  100. March 27, 2008 Joann Fryer. "Silicon chips for optical quantum technologies" . Retrieved March 29, 2008.
  101. April 7, 2008 Ray Kurzweil. "Qutrit breakthrough brings quantum computers closer" . Retrieved April 7, 2008.
  102. April 15, 2008 Kate Greene. "Toward a quantum internet" . Retrieved April 16, 2008.
  103. April 24, 2008 Princeton University. "Scientists discover exotic quantum state of matter". Archived from the original on April 30, 2008. Retrieved April 29, 2008.
  104. May 23, 2008 Belle Dumé. "Spin states endure in quantum dot". Archived from the original on May 29, 2008. Retrieved June 3, 2008.
  105. May 27, 2008 Chris Lee. "Molecular magnets in soap bubbles could lead to quantum RAM" . Retrieved June 3, 2008.
  106. June 2, 2008 Weizmann Institute of Science. "Scientists find new 'quasiparticles'" . Retrieved June 3, 2008.
  107. June 23, 2008 Lisa Zyga. "Physicists Store Images in Vapor". Archived from the original on September 15, 2008. Retrieved June 26, 2008.
  108. June 25, 2008 Physorg.com. "Physicists Produce Quantum-Entangled Images". Archived from the original on August 29, 2008. Retrieved June 26, 2008.
  109. June 26, 2008 Steve Tally. "Quantum computing breakthrough arises from unknown molecule" . Retrieved June 28, 2008.
  110. July 17, 2008 Lauren Rugani. "Quantum Leap" . Retrieved July 17, 2008.
  111. August 5, 2008 Science Daily. "Breakthrough In Quantum Mechanics: Superconducting Electronic Circuit Pumps Microwave Photons" . Retrieved August 6, 2008.
  112. September 3, 2008 Physorg.com. "New probe could aid quantum computing". Archived from the original on September 5, 2008. Retrieved September 6, 2008.
  113. September 25, 2008 ScienceDaily. "Novel Process Promises To Kick-start Quantum Technology Sector" . Retrieved October 16, 2008.
  114. September 22, 2008 Jeremy L. O’Brien. "Quantum computing over the rainbow" . Retrieved October 16, 2008.
  115. October 20, 2008 Science Blog. "Relationships Between Quantum Dots – Stability and Reproduction". Archived from the original on October 22, 2008. Retrieved October 20, 2008.
  116. October 22, 2008 Steven Schultz. "Memoirs of a qubit: Hybrid memory solves key problem for quantum computing" . Retrieved October 23, 2008.
  117. October 23, 2008 National Science Foundation. "World's Smallest Storage Space ... the Nucleus of an Atom" . Retrieved October 27, 2008.
  118. November 20, 2008 Dan Stober. "Stanford: Quantum computing spins closer" . Retrieved November 22, 2008.
  119. December 5, 2008 Miranda Marquit. "Quantum computing: Entanglement may not be necessary". Archived from the original on December 8, 2008. Retrieved December 9, 2008.
  120. December 19, 2008 Next Big Future. "Dwave System's 128 qubit chip has been made". Archived from the original on December 23, 2008. Retrieved December 20, 2008.
  121. April 7, 2009 Next Big Future. "Three Times Higher Carbon 12 Purity for Synthetic Diamond Enables Better Quantum Computing". Archived from the original on April 11, 2009. Retrieved May 19, 2009.
  122. April 23, 2009 Kate Greene. "Extending the Life of Quantum Bits" . Retrieved June 1, 2020.
  123. May 29, 2009 physorg.com. "Researchers make breakthrough in the quantum control of light". Archived from the original on January 31, 2013. Retrieved May 30, 2009.
  124. June 3, 2009 physorg.com. "Physicists demonstrate quantum entanglement in mechanical system". Archived from the original on January 31, 2013. Retrieved June 13, 2009.
  125. June 24, 2009 Nicole Casal Moore. "Lasers can lengthen quantum bit memory by 1,000 times" . Retrieved June 27, 2009.
  126. June 29, 2009 www.sciencedaily.com. "First Electronic Quantum Processor Created" . Retrieved June 29, 2009.
  127. Lu, C. Y; Gao, W. B; Gühne, O; Zhou, X. Q; Chen, Z. B; Pan, J. W (2009). "Demonstrating Anyonic Fractional Statistics with a Six-Qubit Quantum Simulator". Physical Review Letters. 102 (3): 030502. arXiv: 0710.0278 . Bibcode:2009PhRvL.102c0502L. doi:10.1103/PhysRevLett.102.030502. PMID   19257336.
  128. July 6, 2009 Dario Borghino. "Quantum computer closer: Optical transistor made from single molecule" . Retrieved July 8, 2009.
  129. July 8, 2009 R. Colin Johnson. "NIST advances quantum computing" . Retrieved July 9, 2009.
  130. August 7, 2009 Kate Greene. "Scaling Up a Quantum Computer" . Retrieved August 8, 2009.
  131. August 11, 2009 Devitt, S. J; Fowler, A. G; Stephens, A. M; Greentree, A. D; Hollenberg, L. C. L; Munro, W. J; Nemoto, K (2009). "Architectural design for a topological cluster state quantum computer". New J. Phys. 11 (83032): 1221. arXiv: 0808.1782 . Bibcode:2009NJPh...11h3032D. doi:10.1088/1367-2630/11/8/083032.
  132. September 4, 2009 Home, J. P; Hanneke, D; Jost, J. D; Amini, J. M; Leibfried, D; Wineland, D. J (2009). "Complete Methods Set for Scalable Ion Trap Quantum Information Processing". Science. 325 (5945): 1227–30. arXiv: 0907.1865 . Bibcode:2009Sci...325.1227H. doi:10.1126/science.1177077. PMID   19661380.
  133. Politi, A; Matthews, J. C; O'Brien, J. L (2009). "Shor's Quantum Factoring Algorithm on a Photonic Chip". Science. 325 (5945): 1221. arXiv: 0911.1242 . Bibcode:2009Sci...325.1221P. doi:10.1126/science.1173731. PMID   19729649.
  134. Wesenberg, J. H; Ardavan, A; Briggs, G. A. D; Morton, J. J. L; Schoelkopf, R. J; Schuster, D. I; Mølmer, K (2009). "Quantum Computing with an Electron Spin Ensemble". Physical Review Letters. 103 (7): 070502. arXiv: 0903.3506 . Bibcode:2009PhRvL.103g0502W. doi:10.1103/PhysRevLett.103.070502. PMID   19792625.
  135. September 23, 2009 Geordie. "Experimental Demonstration of a Robust and Scalable Flux Qubit" . Retrieved September 24, 2009.
  136. September 25, 2009 Colin Barras. "Photon 'machine gun' could power quantum computers" . Retrieved September 26, 2009.
  137. October 9, 2009 Larry Hardesty. "Quantum computing may actually be useful" . Retrieved October 10, 2009.
  138. November 15, 2009 New Scientist. "First universal programmable quantum computer unveiled" . Retrieved November 16, 2009.
  139. November 20, 2009 ScienceBlog. "UCSB physicists move 1 step closer to quantum computing". Archived from the original on November 23, 2009. Retrieved November 23, 2009.
  140. December 11, 2009 Jeremy Hsu. "Google Demonstrates Quantum Algorithm Promising Superfast Search" . Retrieved December 14, 2009.
  141. Harris, R; Brito, F; Berkley, A J; Johansson, J; Johnson, M W; Lanting, T; Bunyk, P; Ladizinsky, E; Bumble, B; Fung, A; Kaul, A; Kleinsasser, A; Han, S (2009). "Synchronization of multiple coupled rf-SQUID flux qubits". New Journal of Physics. 11 (12): 123022. arXiv: 0903.1884 . Bibcode:2009NJPh...11l3022H. doi:10.1088/1367-2630/11/12/123022.
  142. Monz, T; Kim, K; Villar, A. S; Schindler, P; Chwalla, M; Riebe, M; Roos, C. F; Häffner, H; Hänsel, W; Hennrich, M; Blatt, R (2009). "Realization of Universal Ion Trap Quantum Computation with Decoherence Free Qubits". Physical Review Letters. 103 (20): 200503. arXiv: 0909.3715 . Bibcode:2009PhRvL.103t0503M. doi:10.1103/PhysRevLett.103.200503. PMID   20365970.
  143. January 20, 2010 arXiv blog. "Making Light of Ion Traps" . Retrieved January 21, 2010.
  144. January 28, 2010 Charles Petit (January 28, 2010). "Quantum Computer Simulates Hydrogen Molecule Just Right". Wired. Retrieved February 5, 2010.
  145. February 4, 2010 Larry Hardesty. "First germanium laser brings us closer to 'optical computers'". Archived from the original on December 24, 2011. Retrieved February 4, 2010.
  146. February 6, 2010 Science Daily. "Quantum Computing Leap Forward: Altering a Lone Electron Without Disturbing Its Neighbors" . Retrieved February 6, 2010.
  147. March 18, 2010 Jason Palmer (March 17, 2010). "Team's quantum object is biggest by factor of billions". BBC News. Retrieved March 20, 2010.
  148. University of Cambridge. "Cambridge discovery could pave the way for quantum computing" . Retrieved March 20, 2010.[ dead link ]
  149. April 1, 2010 ScienceDaily. "Racetrack Ion Trap Is a Contender in Quantum Computing Quest" . Retrieved April 3, 2010.
  150. April 21, 2010 Rice University (April 21, 2010). "Bizarre matter could find use in quantum computers" . Retrieved August 29, 2018.
  151. May 27, 2010 E. Vetsch; et al. "German physicists develop a quantum interface between light and atoms". Archived from the original on December 19, 2011. Retrieved April 22, 2010.
  152. June 3, 2010 Asavin Wattanajantra. "New form of LED brings quantum computing closer" . Retrieved June 5, 2010.
  153. August 29, 2010 Munro, W. J; Harrison, K. A; Stephens, A. M; Devitt, S. J; Nemoto, K (2010). "From quantum multiplexing to high-performance quantum networking". Nature Photonics. 4 (11): 792–796. arXiv: 0910.4038 . Bibcode:2010NaPho...4..792M. doi:10.1038/nphoton.2010.213.
  154. September 17, 2010 Kurzweil accelerating intelligence. "Two-photon optical chip enables more complex quantum computing" . Retrieved September 17, 2010.
  155. "Toward a Useful Quantum Computer: Researchers Design and test Microfabricated Planar Ion Traps". ScienceDaily. May 28, 2010. Retrieved September 20, 2010.
  156. "Quantum Future: Designing and Testing Microfabricated Planar Ion Traps". Georgia Tech Research Institute . Retrieved September 20, 2010.
  157. December 23, 2010 TU Delft. "TU scientists in Nature: Better control of building blocks for quantum computer". Archived from the original on December 24, 2010. Retrieved December 26, 2010.
  158. Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L. W; Itoh, Kohei M; Morton, John J. L (2011). "Entanglement in a solid-state spin ensemble". Nature. 470 (7332): 69–72. arXiv: 1010.0107 . Bibcode:2011Natur.470...69S. doi:10.1038/nature09696. PMID   21248751.
  159. February 14, 2011 UC Santa Barbara Office of Public Affairs. "International Team of Scientists Says It's High 'Noon' for Microwave Photons" . Retrieved February 16, 2011.
  160. February 24, 2011 Kurzweil Accelerating Intelligence. "'Quantum antennas' enable exchange of quantum information between two memory cells" . Retrieved February 24, 2011.
  161. Peruzzo, Alberto; Laing, Anthony; Politi, Alberto; Rudolph, Terry; O'Brien, Jeremy L (2011). "Multimode quantum interference of photons in multiport integrated devices". Nature Communications. 2: 224. arXiv: 1007.1372 . Bibcode:2011NatCo...2..224P. doi:10.1038/ncomms1228. PMC   3072100 . PMID   21364563.
  162. March 7, 2011 KFC. "New Magnetic Resonance Technique Could Revolutionise Quantum Computing" . Retrieved June 1, 2020.
  163. March 17, 2011 Christof Weitenberg; Manuel Endres; Jacob F. Sherson; Marc Cheneau; Peter Schauß; Takeshi Fukuhara; Immanuel Bloch & Stefan Kuhr. "A Quantum Pen for Single Atoms". Archived from the original on March 18, 2011. Retrieved March 19, 2011.
  164. March 21, 2011 Cordisnews. "German research brings us one step closer to quantum computing" . Retrieved March 22, 2011.
  165. Monz, T; Schindler, P; Barreiro, J. T; Chwalla, M; Nigg, D; Coish, W. A; Harlander, M; Hänsel, W; Hennrich, M; Blatt, R (2011). "14-Qubit Entanglement: Creation and Coherence". Physical Review Letters . 106 (13): 130506. arXiv: 1009.6126 . Bibcode:2011PhRvL.106m0506M. doi:10.1103/PhysRevLett.106.130506. PMID   21517367.
  166. May 12, 2011 Physicsworld.com. "Quantum-computing firm opens the box". Archived from the original on May 15, 2011. Retrieved May 17, 2011.
  167. Physorg.com (May 26, 2011). "Repetitive error correction demonstrated in a quantum processor". physorg.com. Archived from the original on January 7, 2012. Retrieved May 26, 2011.
  168. June 27, 2011 UC Santa Barbara. "International Team Demonstrates Subatomic Quantum Memory in Diamond" . Retrieved June 29, 2011.
  169. July 15, 2011 Nanowerk News. "Quantum computing breakthrough in the creation of massive numbers of entangled qubits" . Retrieved July 18, 2011.
  170. July 20, 2011 Nanowerk News. "Scientists take the next major step toward quantum computing" . Retrieved July 20, 2011.
  171. August 2, 2011 nanowerk. "Dramatic simplification paves the way for building a quantum computer" . Retrieved August 3, 2011.
  172. Ospelkaus, C; Warring, U; Colombe, Y; Brown, K. R; Amini, J. M; Leibfried, D; Wineland, D. J (2011). "Microwave quantum logic gates for trapped ions". Nature. 476 (7359): 181–184. arXiv: 1104.3573 . Bibcode:2011Natur.476..181O. doi:10.1038/nature10290. PMID   21833084.
  173. August 30, 2011 Laura Ost. "NIST Achieves Record-Low Error Rate for Quantum Information Processing with One Qubit" . Retrieved September 3, 2011.
  174. September 1, 2011 Mariantoni, M; Wang, H; Yamamoto, T; Neeley, M; Bialczak, R. C; Chen, Y; Lenander, M; Lucero, E; O'Connell, A. D; Sank, D; Weides, M; Wenner, J; Yin, Y; Zhao, J; Korotkov, A. N; Cleland, A. N; Martinis, J. M (2011). "Implementing the Quantum von Neumann Architecture with Superconducting Circuits". Science. 334 (6052): 61–65. arXiv: 1109.3743 . Bibcode:2011Sci...334...61M. doi:10.1126/science.1208517. PMID   21885732.
  175. Jablonski, Chris (October 4, 2011). "One step closer to quantum computers". ZDnet. Retrieved August 29, 2018.
  176. December 2, 2011 Clara Moskowitz; Ian Walmsley; Michael Sprague. "Two Diamonds Linked by Strange Quantum Entanglement" . Retrieved December 2, 2011.
  177. Bian, Z; Chudak, F; MacReady, W. G; Clark, L; Gaitan, F (2013). "Experimental determination of Ramsey numbers with quantum annealing". Physical Review Letters. 111 (13): 130505. arXiv: 1201.1842 . Bibcode:2013PhRvL.111m0505B. doi:10.1103/PhysRevLett.111.130505. PMID   24116761.
  178. Fuechsle, M; Miwa, J. A; Mahapatra, S; Ryu, H; Lee, S; Warschkow, O; Hollenberg, L. C; Klimeck, G; Simmons, M. Y (February 19, 2012). "A single-atom transistor". Nature Nanotechnology. 7 (4): 242–246. Bibcode:2012NatNa...7..242F. doi:10.1038/nnano.2012.21. PMID   22343383.
  179. John Markoff (February 19, 2012). "Physicists Create a Working Transistor From a Single Atom". The New York Times. Retrieved February 19, 2012.
  180. Grotz, Bernhard; Hauf, Moritz V; Dankerl, Markus; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Wrachtrup, Jörg; Stutzmann, Martin; Reinhard, Friedemann; Garrido, Jose A (2012). "Charge state manipulation of qubits in diamond". Nature Communications. 3: 729. Bibcode:2012NatCo...3..729G. doi:10.1038/ncomms1729. PMC   3316888 . PMID   22395620.
  181. Britton, J. W; Sawyer, B. C; Keith, A. C; Wang, C. C; Freericks, J. K; Uys, H; Biercuk, M. J; Bollinger, J. J (April 26, 2012). "Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins". Nature. 484 (7395): 489–492. arXiv: 1204.5789 . Bibcode:2012Natur.484..489B. doi:10.1038/nature10981. PMID   22538611.
  182. Lucy Sherriff. "300 atom quantum simulator smashes qubit record" . Retrieved February 9, 2015.
  183. Yao, Xing-Can; Wang, Tian-Xiong; Chen, Hao-Ze; Gao, Wei-Bo; Fowler, Austin G; Raussendorf, Robert; Chen, Zeng-Bing; Liu, Nai-Le; Lu, Chao-Yang; Deng, You-Jin; Chen, Yu-Ao; Pan, Jian-Wei (2012). "Experimental demonstration of topological error correction". Nature. 482 (7386): 489–494. arXiv: 0905.1542 . Bibcode:2012Natur.482..489Y. doi:10.1038/nature10770. PMID   22358838.
  184. 1QBit. "1QBit Website".
  185. October 14, 2012 Munro, W. J; Stephens, A. M; Devitt, S. J; Harrison, K. A; Nemoto, K (2012). "Quantum communication without the necessity of quantum memories". Nature Photonics. 6 (11): 777–781. arXiv: 1306.4137 . Bibcode:2012NaPho...6..777M. doi:10.1038/nphoton.2012.243.
  186. Maurer, P. C; Kucsko, G; Latta, C; Jiang, L; Yao, N. Y; Bennett, S. D; Pastawski, F; Hunger, D; Chisholm, N; Markham, M; Twitchen, D. J; Cirac, J. I; Lukin, M. D (June 8, 2012). "Room-Temperature Quantum Bit Memory Exceeding One Second". Science (Submitted manuscript). 336 (6086): 1283–1286. Bibcode:2012Sci...336.1283M. doi:10.1126/science.1220513. PMID   22679092.
  187. Peckham, Matt (July 6, 2012). "Quantum Computing at Room Temperature - Now a Reality". Magazine/Periodical. Time Magazine (Techland) Time Inc. p. 1. Retrieved August 5, 2012.
  188. Koh, Dax Enshan; Hall, Michael J. W; Setiawan; Pope, James E; Marletto, Chiara; Kay, Alastair; Scarani, Valerio; Ekert, Artur (2012). "Effects of Reduced Measurement Independence on Bell-Based Randomness Expansion". Physical Review Letters. 109 (16): 160404. arXiv: 1202.3571 . Bibcode:2012PhRvL.109p0404K. doi:10.1103/PhysRevLett.109.160404. PMID   23350071.
  189. December 7, 2012 Horsman, C; Fowler, A. G; Devitt, S. J; Van Meter, R (2012). "Surface code quantum computing by lattice surgery". New J. Phys. 14 (12): 123011. arXiv: 1111.4022 . Bibcode:2012NJPh...14l3011H. doi:10.1088/1367-2630/14/12/123011.
  190. Kastrenakes, Jacob (November 14, 2013). "Researchers smash through quantum computer storage record". Webzine. The Verge. Retrieved November 20, 2013.
  191. "Quantum Computer Breakthrough 2013". November 24, 2013.
  192. October 10, 2013 Devitt, S. J; Stephens, A. M; Munro, W. J; Nemoto, K (2013). "Requirements for fault-tolerant factoring on an atom-optics quantum computer". Nature Communications. 4: 2524. arXiv: 1212.4934 . Bibcode:2013NatCo...4.2524D. doi:10.1038/ncomms3524. PMID   24088785.
  193. Penetrating Hard Targets project
  194. NSA seeks to develop quantum computer to crack nearly every kind of encryption -- KurzweilAI.net January 3, 2014
  195. NSA seeks to build quantum computer that could crack most types of encryption -- Washington Post
  196. The NSA Is Building a Computer to Crack Almost Any Code - Time.com
  197. August 4, 2014 Nemoto, K.; Trupke, M.; Devitt, S. J; Stephens, A. M; Scharfenberger, B; Buczak, K; Nobauer, T; Everitt, M. S; Schmiedmayer, J; Munro, W. J (2014). "Photonic architecture for scalable quantum information processing in diamond". Physical Review X. 4 (3): 031022. arXiv: 1309.4277 . Bibcode:2014PhRvX...4c1022N. doi:10.1103/PhysRevX.4.031022.
  198. Nigg, D; Müller, M; Martinez, M. A; Schindler, P; Hennrich, M; Monz, T; Martin-Delgado, M. A; Blatt, R (July 18, 2014). "Quantum computations on a topologically encoded qubit". Science . 345 (6194): 302–305. arXiv: 1403.5426 . Bibcode:2014Sci...345..302N. doi:10.1126/science.1253742. PMID   24925911.
  199. Markoff, John (May 29, 2014). "Scientists Report Finding Reliable Way to Teleport Data". New York Times . Retrieved May 29, 2014.
  200. Pfaff, W; Hensen, B. J; Bernien, H; Van Dam, S. B; Blok, M. S; Taminiau, T. H; Tiggelman, M. J; Schouten, R. N; Markham, M; Twitchen, D. J; Hanson, R (May 29, 2014). "Unconditional quantum teleportation between distant solid-state quantum bits". Science . 345 (6196): 532–535. arXiv: 1404.4369 . Bibcode:2014Sci...345..532P. doi:10.1126/science.1253512. PMID   25082696.
  201. November 28, 2014 "New largest number factored on a quantum device is 56,153" . Retrieved January 7, 2015.
  202. December 2, 2014 "The Mathematical Trick That Helped Smash The Record For The Largest Number Ever Factorised By A Quantum Computer: 56153=233 x 241" . Retrieved January 7, 2015.
  203. Zhong, Manjin; Hedges, Morgan P; Ahlefeldt, Rose L; Bartholomew, John G; Beavan, Sarah E; Wittig, Sven M; Longdell, Jevon J; Sellars, Matthew J (2015). "Optically addressable nuclear spins in a solid with a six-hour coherence time". Nature. 517 (7533): 177–180. Bibcode:2015Natur.517..177Z. doi:10.1038/nature14025. PMID   25567283.
  204. April 13, 2015 "Breakthrough opens door to affordable quantum computers" . Retrieved April 16, 2015.
  205. Córcoles, A.D; Magesan, Easwar; Srinivasan, Srikanth J; Cross, Andrew W; Steffen, M; Gambetta, Jay M; Chow, Jerry M (2015). "Demonstration of a quantum error detection code using a square lattice of four superconducting qubits". Nature Communications. 6: 6979. arXiv: 1410.6419 . Bibcode:2015NatCo...6.6979C. doi:10.1038/ncomms7979. PMC   4421819 . PMID   25923200.
  206. June 22, 2015 "D-Wave Systems Inc., the world's first quantum computing company, today announced that it has broken the 1000 qubit barrier" . Retrieved June 22, 2015.
  207. October 6, 2015 "Crucial hurdle overcome in quantum computing" . Retrieved October 6, 2015.
  208. "Quantum computer emulated by a classical system".
  209. Monz, T; Nigg, D; Martinez, E. A; Brandl, M. F; Schindler, P; Rines, R; Wang, S. X; Chuang, I. L; Blatt, R; et al. (March 4, 2016). "Realization of a scalable Shor algorithm". Science. 351 (6277): 1068–1070. arXiv: 1507.08852 . Bibcode:2016Sci...351.1068M. doi:10.1126/science.aad9480. PMID   26941315.
  210. September 29, 2016 Devitt, S. J (2016). "Performing quantum computing experiments in the cloud". Physical Review A. 94 (3): 032329. arXiv: 1605.05709 . Bibcode:2016PhRvA..94c2329D. doi:10.1103/PhysRevA.94.032329.
  211. Alsina, D; Latorre, J. I (2016). "Experimental test of Mermin inequalities on a five-qubit quantum computer". Physical Review A. 94 (1): 012314. arXiv: 1605.04220 . Bibcode:2016PhRvA..94a2314A. doi:10.1103/PhysRevA.94.012314.
  212. o'Malley, P. J. J; Babbush, R; Kivlichan, I. D; Romero, J; McClean, J. R; Barends, R; Kelly, J; Roushan, P; Tranter, A; Ding, N; Campbell, B; Chen, Y; Chen, Z; Chiaro, B; Dunsworth, A; Fowler, A. G; Jeffrey, E; Lucero, E; Megrant, A; Mutus, J. Y; Neeley, M; Neill, C; Quintana, C; Sank, D; Vainsencher, A; Wenner, J; White, T. C; Coveney, P. V; Love, P. J; Neven, H; et al. (July 18, 2016). "Scalable Quantum Simulation of Molecular Energies". Physical Review X. 6 (3): 031007. arXiv: 1512.06860 . Bibcode:2016PhRvX...6c1007O. doi:10.1103/PhysRevX.6.031007.
  213. November 2, 2016 Devitt, S. J; Greentree, A. D; Stephens, A. M; Van Meter, R (2016). "High-speed quantum networking by ship". Scientific Reports. 6: 36163. arXiv: 1605.05709 . Bibcode:2016NatSR...636163D. doi:10.1038/srep36163. PMC   5090252 . PMID   27805001.
  214. "D-Wave Announces D-Wave 2000Q Quantum Computer and First System Order | D-Wave Systems". www.dwavesys.com. Retrieved January 26, 2017.
  215. Lekitsch, B; Weidt, S; Fowler, A. G; Mølmer, K; Devitt, S. J; Wunderlich, C; Hensinger, W. K (February 1, 2017). "Blueprint for a microwave trapped ion quantum computer". Science Advances. 3 (2): e1601540. arXiv: 1508.00420 . Bibcode:2017SciA....3E1540L. doi:10.1126/sciadv.1601540. PMC   5287699 . PMID   28164154.
  216. Meredith Rutland Bauer (May 17, 2017). "IBM Just Made a 17 Qubit Quantum Processor, Its Most Powerful One Yet". Motherboard.
  217. "Qudits: The Real Future of Quantum Computing?". IEEE Spectrum. June 28, 2017. Retrieved June 29, 2017.
  218. "Microsoft makes play for next wave of computing with quantum computing toolkit". arstechnica.com. September 25, 2017. Retrieved October 5, 2017.
  219. Knight, Will (October 10, 2017). "Quantum Inside: Intel Manufactures an Exotic New Chip". MIT Technology Review. Retrieved July 5, 2018.
  220. "IBM Raises the Bar with a 50-Qubit Quantum Computer". MIT Technology Review. Retrieved December 13, 2017.
  221. Hignett, Katherine (February 16, 2018). "Physics Creates New Form Of Light That Could Drive The Quantum Computing Revolution". Newsweek . Retrieved February 17, 2018.
  222. Liang, Q. Y; Venkatramani, A. V; Cantu, S. H; Nicholson, T. L; Gullans, M. J; Gorshkov, A. V; Thompson, J. D; Chin, C; Lukin, M. D; Vuletić, V (February 16, 2018). "Observation of three-photon bound states in a quantum nonlinear medium". Science . 359 (6377): 783–786. arXiv: 1709.01478 . Bibcode:2018Sci...359..783L. doi:10.1126/science.aao7293. PMC   6467536 . PMID   29449489.
  223. "Scientists make major quantum computing breakthrough". March 2018.
  224. Giles, Martin (February 15, 2018). "Old-fashioned silicon might be the key to building ubiquitous quantum computers". MIT Technology Review. Retrieved July 5, 2018.
  225. Emily Conover (March 5, 2018). "Google moves toward quantum supremacy with 72-qubit computer". Science News. Retrieved August 28, 2018.
  226. Forrest, Conner (June 12, 2018). "Why Intel's smallest spin qubit chip could be a turning point in quantum computing". TechRepublic. Retrieved July 12, 2018.
  227. Hsu, Jeremy (January 9, 2018). "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". Institute of Electrical and Electronics Engineers . Retrieved July 5, 2018.
  228. Nagata, K; Kuramitani, K; Sekiguchi, Y; Kosaka, H (August 13, 2018). "Universal holonomic quantum gates over geometric spin qubits with polarised microwaves". Nature Communications . 9 (3227): 3227. Bibcode:2018NatCo...9.3227N. doi:10.1038/s41467-018-05664-w. PMC   6089953 . PMID   30104616.
  229. Lenzini, Francesco (December 7, 2018). "Integrated photonic platform for quantum information with continuous variables". Science Advances. 4 (12): eaat9331. arXiv: 1804.07435 . Bibcode:2018SciA....4.9331L. doi: 10.1126/sciadv.aat9331 . PMC   6286167 . PMID   30539143.
  230. Ion-based commercial quantum computer is a first – Physics World
  231. "IonQ".
  232. 115th Congress (2018) (June 26, 2018). "H.R. 6227 (115th)". Legislation. GovTrack.us. Retrieved February 11, 2019. National Quantum Initiative Act
  233. "President Trump has signed a $1.2 billon law to boost US quantum tech". MIT Technology Review. Retrieved February 11, 2019.
  234. "US National Quantum Initiative Act passed unanimously". The Stack. December 18, 2018. Retrieved February 11, 2019.
  235. Aron, Jacob (January 8, 2019). "IBM unveils its first commercial quantum computer". New Scientist. Retrieved January 8, 2019.
  236. "IBM unveils its first commercial quantum computer". TechCrunch. Retrieved February 18, 2019.
  237. Dattani, Nike; Szalay, Szilard; Chancellor, Nicholas (January 22, 2019). "Pegasus: The second connectivity graph for large-scale quantum annealing hardware". arXiv: 1901.07636 [quant-ph].
  238. Dattani, Nike; Chancellor, Nicholas (January 23, 2019). "Embedding quadratization gadgets on Chimera and Pegasus graphs". arXiv: 1901.07676 [quant-ph].
  239. Kokail, C; Maier, C; Van Bijnen, R; Brydges, T; Joshi, M. K; Jurcevic, P; Muschik, C. A; Silvi, P; Blatt, R; Roos, C; Zoller, P (May 15, 2019). "Self-verifying variational quantum simulation of lattice models". Science . 569 (7756): 355–360. arXiv: 1810.03421 . Bibcode:2019Natur.569..355K. doi:10.1038/s41586-019-1177-4. PMID   31092942.
  240. Unden, T.; Louzon, D.; Zwolak, M.; Zurek, W. H.; Jelezko, F. (October 1, 2019). "Revealing the Emergence of Classicality Using Nitrogen-Vacancy Centers". PRL . 123 (140402). arXiv: 1809.10456 . doi:10.1103/PhysRevLett.123.140402.
  241. Cho, A. (September 13, 2019). "Quantum Darwinism seen in diamond traps". Science . 365 (6458). doi:10.1126/science.365.6458.1070.
  242. "Google may have taken a step towards quantum computing 'supremacy' (updated)". Engadget. Retrieved September 24, 2019.
  243. Porter, Jon (September 23, 2019). "Google may have just ushered in an era of 'quantum supremacy'". The Verge. Retrieved September 24, 2019.
  244. Murgia, Waters, Madhumita, Richard (September 20, 2019). "Google claims to have reached quantum supremacy". Financial Times. Retrieved September 24, 2019.
  245. Shankland, Stephen. "IBM's biggest-yet 53-qubit quantum computer will come online in October". CNET. Retrieved October 17, 2019.
  246. "Quantum researchers able to split one photon into three". phys.org. Retrieved March 9, 2020.
  247. Chang, C. W. Sandbo; Sabín, Carlos; Forn-Díaz, P.; Quijandría, Fernando; Vadiraj, A. M.; Nsanzineza, I.; Johansson, G.; Wilson, C. M. (January 16, 2020). "Observation of Three-Photon Spontaneous Parametric Down-Conversion in a Superconducting Parametric Cavity". Physical Review X. 10 (1): 011011. Bibcode:2020PhRvX..10a1011C. doi: 10.1103/PhysRevX.10.011011 .
  248. "Artificial atoms create stable qubits for quantum computing". phys.org. Retrieved March 9, 2020.
  249. Leon, R. C. C.; Yang, C. H.; Hwang, J. C. C.; Lemyre, J. Camirand; Tanttu, T.; Huang, W.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Laucht, A.; Pioro-Ladrière, M.; Saraiva, A.; Dzurak, A. S. (February 11, 2020). "Coherent spin control of s-, p-, d- and f-electrons in a silicon quantum dot". Nature Communications. 11 (1): 797. arXiv: 1902.01550 . Bibcode:2020NatCo..11..797L. doi:10.1038/s41467-019-14053-w. ISSN   2041-1723. PMC   7012832 . PMID   32047151.
  250. "Producing single photons from a stream of single electrons". phys.org. Retrieved March 8, 2020.
  251. Hsiao, Tzu-Kan; Rubino, Antonio; Chung, Yousun; Son, Seok-Kyun; Hou, Hangtian; Pedrós, Jorge; Nasir, Ateeq; Éthier-Majcher, Gabriel; Stanley, Megan J.; Phillips, Richard T.; Mitchell, Thomas A.; Griffiths, Jonathan P.; Farrer, Ian; Ritchie, David A.; Ford, Christopher J. B. (February 14, 2020). "Single-photon emission from single-electron transport in a SAW-driven lateral light-emitting diode". Nature Communications. 11 (1): 917. arXiv: 1901.03464 . Bibcode:2020NatCo..11..917H. doi:10.1038/s41467-020-14560-1. ISSN   2041-1723. PMC   7021712 . PMID   32060278.
  252. "Scientists 'film' a quantum measurement". phys.org. Retrieved March 9, 2020.
  253. Pokorny, Fabian; Zhang, Chi; Higgins, Gerard; Cabello, Adán; Kleinmann, Matthias; Hennrich, Markus (February 25, 2020). "Tracking the Dynamics of an Ideal Quantum Measurement". Physical Review Letters. 124 (8): 080401. arXiv: 1903.10398 . Bibcode:2020PhRvL.124h0401P. doi:10.1103/PhysRevLett.124.080401. PMID   32167322.
  254. "Scientists measure electron spin qubit without demolishing it". phys.org. Retrieved April 5, 2020.
  255. Yoneda, J.; Takeda, K.; Noiri, A.; Nakajima, T.; Li, S.; Kamioka, J.; Kodera, T.; Tarucha, S. (March 2, 2020). "Quantum non-demolition readout of an electron spin in silicon". Nature Communications. 11 (1): 1144. Bibcode:2020NatCo..11.1144Y. doi:10.1038/s41467-020-14818-8. ISSN   2041-1723. PMC   7052195 . PMID   32123167.
  256. "Engineers crack 58-year-old puzzle on way to quantum breakthrough". phys.org. Retrieved April 5, 2020.
  257. Asaad, Serwan; Mourik, Vincent; Joecker, Benjamin; Johnson, Mark A. I.; Baczewski, Andrew D.; Firgau, Hannes R.; Mądzik, Mateusz T.; Schmitt, Vivien; Pla, Jarryd J.; Hudson, Fay E.; Itoh, Kohei M.; McCallum, Jeffrey C.; Dzurak, Andrew S.; Laucht, Arne; Morello, Andrea (March 2020). "Coherent electrical control of a single high-spin nucleus in silicon". Nature. 579 (7798): 205–209. arXiv: 1906.01086 . Bibcode:2020Natur.579..205A. doi:10.1038/s41586-020-2057-7. PMID   32161384.
  258. Scientists create quantum sensor that covers entire radio frequency spectrum, Phys.org/United States Army Research Laboratory, 2020-03-19
  259. Meyer, David H; Castillo, Zachary A; Cox, Kevin C; Kunz, Paul D (January 10, 2020). "Assessment of Rydberg atoms for wideband electric field sensing". Journal of Physics B: Atomic, Molecular and Optical Physics. 53 (3): 034001. arXiv: 1910.00646 . Bibcode:2020JPhB...53c4001M. doi:10.1088/1361-6455/ab6051. ISSN   0953-4075.
  260. "Researchers demonstrate the missing link for a quantum internet". phys.org. Retrieved April 7, 2020.
  261. Bhaskar, M. K.; Riedinger, R.; Machielse, B.; Levonian, D. S.; Nguyen, C. T.; Knall, E. N.; Park, H.; Englund, D.; Lončar, M.; Sukachev, D. D.; Lukin, M. D. (April 2020). "Experimental demonstration of memory-enhanced quantum communication". Nature. 580 (7801): 60–64. arXiv: 1909.01323 . Bibcode:2020Natur.580...60B. doi:10.1038/s41586-020-2103-5. PMID   32238931.
  262. Anderton, Kevin. "The Largest Roadblock In Quantum Computing Has Been Passed [Infographic]". Forbes. Retrieved May 16, 2020.
  263. Crane, Leah. "Quantum computer chips demonstrated at the highest temperatures ever". New Scientist. Retrieved May 16, 2020.
  264. Delbert, Caroline (April 17, 2020). "Hot Qubits Could Deliver a Quantum Computing Breakthrough". Popular Mechanics. Retrieved May 16, 2020.
  265. "'Hot' qubits crack quantum computing temperature barrier - ABC News". www.abc.net.au. April 15, 2020. Retrieved May 16, 2020.
  266. "Hot qubits break one of the biggest constraints to practical quantum computers". phys.org. Retrieved May 16, 2020.
  267. Yang, C. H.; Leon, R. C. C.; Hwang, J. C. C.; Saraiva, A.; Tanttu, T.; Huang, W.; Camirand Lemyre, J.; Chan, K. W.; Tan, K. Y.; Hudson, F. E.; Itoh, K. M.; Morello, A.; Pioro-Ladrière, M.; Laucht, A.; Dzurak, A. S. (April 2020). "Operation of a silicon quantum processor unit cell above one kelvin". Nature. 580 (7803): 350–354. arXiv: 1902.09126 . doi:10.1038/s41586-020-2171-6. PMID   32296190.
  268. "New discovery settles long-standing debate about photovoltaic materials". phys.org. Retrieved May 17, 2020.
  269. Liu, Z.; Vaswani, C.; Yang, X.; Zhao, X.; Yao, Y.; Song, Z.; Cheng, D.; Shi, Y.; Luo, L.; Mudiyanselage, D.-H.; Huang, C.; Park, J.-M.; Kim, R. H. J.; Zhao, J.; Yan, Y.; Ho, K.-M.; Wang, J. "Ultrafast Control of Excitonic Rashba Fine Structure by Phonon Coherence in the Metal Halide Perovskite ${\mathrm{CH".Cite journal requires |journal= (help)_{3}{\mathrm{NH}}_{3}{\mathrm{PbI}}_{3}$ |journal=Physical Review Letters |date=16 April 2020 |volume=124 |issue=15 |pages=157401 |doi=10.1103/PhysRevLett.124.157401 }}
  270. "Scientists demonstrate quantum radar prototype". phys.org. Retrieved June 12, 2020.
  271. ""Quantum radar" uses entangled photons to detect objects". New Atlas. May 12, 2020. Retrieved June 12, 2020.
  272. Barzanjeh, S.; Pirandola, S.; Vitali, D.; Fink, J. M. (May 1, 2020). "Microwave quantum illumination using a digital receiver". Science Advances. 6 (19): eabb0451. doi: 10.1126/sciadv.abb0451 .
  273. "Scientists break the link between a quantum material's spin and orbital states". phys.org. Retrieved June 12, 2020.
  274. Shen, L.; Mack, S. A.; Dakovski, G.; Coslovich, G.; Krupin, O.; Hoffmann, M.; Huang, S.-W.; Chuang, Y-D.; Johnson, J. A.; Lieu, S.; Zohar, S.; Ford, C.; Kozina, M.; Schlotter, W.; Minitti, M. P.; Fujioka, J.; Moore, R.; Lee, W-S.; Hussain, Z.; Tokura, Y.; Littlewood, P.; Turner, J. J. (May 12, 2020). "Decoupling spin-orbital correlations in a layered manganite amidst ultrafast hybridized charge-transfer band excitation". Physical Review B. 101 (20): 201103. doi: 10.1103/PhysRevB.101.201103 .
  275. "Photon discovery is a major step toward large-scale quantum technologies". phys.org. Retrieved June 14, 2020.
  276. "Physicists develop integrated photon source for macro quantum-photonics". optics.org. Retrieved June 14, 2020.
  277. "Researchers Discover Near-Ideal Photon Sources in Silicon Quantum Photonics". Synced. May 22, 2020. Retrieved June 14, 2020.
  278. Paesani, S.; Borghi, M.; Signorini, S.; Maïnos, A.; Pavesi, L.; Laing, A. (May 19, 2020). "Near-ideal spontaneous photon sources in silicon quantum photonics". Nature Communications. 11 (1): 1–6. doi: 10.1038/s41467-020-16187-8 .
  279. Lachmann, Maike D.; Rasel, Ernst M. (June 11, 2020). "Quantum matter orbits Earth". Nature. 582 (7811): 186–187. doi: 10.1038/d41586-020-01653-6 .
  280. "Quantum 'fifth state of matter' observed in space for first time". phys.org. Retrieved July 4, 2020.
  281. Aveline, David C.; Williams, Jason R.; Elliott, Ethan R.; Dutenhoffer, Chelsea; Kellogg, James R.; Kohel, James M.; Lay, Norman E.; Oudrhiri, Kamal; Shotwell, Robert F.; Yu, Nan; Thompson, Robert J. (June 2020). "Observation of Bose–Einstein condensates in an Earth-orbiting research lab". Nature. 582 (7811): 193–197. doi:10.1038/s41586-020-2346-1.
  282. "The smallest motor in the world". phys.org. Retrieved July 4, 2020.
  283. "Nano-motor of just 16 atoms runs at the boundary of quantum physics". New Atlas. June 17, 2020. Retrieved July 4, 2020.
  284. Stolz, Samuel; Gröning, Oliver; Prinz, Jan; Brune, Harald; Widmer, Roland (June 15, 2020). "Molecular motor crossing the frontier of classical to quantum tunneling motion". Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1918654117. ISSN   0027-8424. PMID   32541061.
  285. "New techniques improve quantum communication, entangle phonons". phys.org. Retrieved July 5, 2020.
  286. Schirber, Michael (June 12, 2020). "Quantum Erasing with Phonons". Physics. Retrieved July 5, 2020.
  287. Chang, H.-S.; Zhong, Y. P.; Bienfait, A.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 17, 2020). "Remote Entanglement via Adiabatic Passage Using a Tunably Dissipative Quantum Communication System". Physical Review Letters. 124 (24): 240502. arXiv: 2005.12334 . doi:10.1103/PhysRevLett.124.240502.
  288. Bienfait, A.; Zhong, Y. P.; Chang, H.-S.; Chou, M.-H.; Conner, C. R.; Dumur, É.; Grebel, J.; Peairs, G. A.; Povey, R. G.; Satzinger, K. J.; Cleland, A. N. (June 12, 2020). "Quantum Erasure Using Entangled Surface Acoustic Phonons". Physical Review X. 10 (2): 021055. doi: 10.1103/PhysRevX.10.021055 .