Pancreatic elastase II

Last updated
Pancreatic elastase II
Identifiers
EC no. 3.4.21.71
CAS no. 75603-19-9
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Pancreatic elastase II (EC 3.4.21.71, pancreatic elastase 2) is an enzyme. [1] [2] This enzyme catalyses the following chemical reaction

Preferential cleavage: Leu-, Met- and Phe-. Hydrolyses elastin

This peptidase from trypsin family is formed by activation of proelastase II from mammalian pancreas by trypsin.

Related Research Articles

<span class="mw-page-title-main">Trypsin</span> Family of digestive enzymes

Trypsin is an enzyme in the first section of the small intestine that starts the digestion of protein molecules by cutting long chains of amino acids into smaller pieces. It is a serine protease from the PA clan superfamily, found in the digestive system of many vertebrates, where it hydrolyzes proteins. Trypsin is formed in the small intestine when its proenzyme form, the trypsinogen produced by the pancreas, is activated. Trypsin cuts peptide chains mainly at the carboxyl side of the amino acids lysine or arginine. It is used for numerous biotechnological processes. The process is commonly referred to as trypsin proteolysis or trypsinization, and proteins that have been digested/treated with trypsin are said to have been trypsinized. Trypsin was discovered in 1876 by Wilhelm Kühne and was named from the Ancient Greek word for rubbing since it was first isolated by rubbing the pancreas with glycerin.

<span class="mw-page-title-main">Enteropeptidase</span> Class of enzymes

Enteropeptidase is an enzyme produced by cells of the duodenum and is involved in digestion in humans and other animals. Enteropeptidase converts trypsinogen into its active form trypsin, resulting in the subsequent activation of pancreatic digestive enzymes. Absence of enteropeptidase results in intestinal digestion impairment.

<span class="mw-page-title-main">Exocrine pancreatic insufficiency</span> Human disease

Exocrine pancreatic insufficiency (EPI) is the inability to properly digest food due to a lack or reduction of digestive enzymes made by the pancreas. EPI can occur in humans and is prevalent in many conditions such as cystic fibrosis, Shwachman–Diamond syndrome, different types of pancreatitis, multiple types of diabetes mellitus, advanced renal disease, older adults, celiac disease, IBS-D, IBD, HIV, alcohol-related liver disease, Sjogren syndrome, tobacco use, and use of somatostatin analogues.

Pancreatic elastase is a form of elastase that is produced in the acinar cells of the pancreas, initially produced as an inactive zymogen and later activated in the duodenum by trypsin. Elastases form a subfamily of serine proteases, characterized by a distinctive structure consisting of two beta barrel domains converging at the active site that hydrolyze amides and esters amongst many proteins in addition to elastin, a type of connective tissue that holds organs together. Pancreatic elastase 1 is a serine endopeptidase, a specific type of protease that has the amino acid serine at its active site. Although the recommended name is pancreatic elastase, it can also be referred to as elastase-1, pancreatopeptidase, PE, or serine elastase.

<span class="mw-page-title-main">Cathepsin G</span> Protein-coding gene in the species Homo sapiens

Cathepsin G is a protein that in humans is encoded by the CTSG gene. It is one of the three serine proteases of the chymotrypsin family that are stored in the azurophil granules, and also a member of the peptidase S1 protein family. Cathepsin G plays an important role in eliminating intracellular pathogens and breaking down tissues at inflammatory sites, as well as in anti-inflammatory response.

<span class="mw-page-title-main">Bile salt-dependent lipase</span> Mammalian protein found in Homo sapiens

Bile salt-dependent lipase, also known as carboxyl ester lipase is an enzyme produced by the adult pancreas and aids in the digestion of fats. Bile salt-stimulated lipase is an equivalent enzyme found within breast milk. BSDL has been found in the pancreatic secretions of all species in which it has been looked for. BSSL, originally discovered in the milk of humans and various other primates, has since been found in the milk of many animals including dogs, cats, rats, and rabbits.

<span class="mw-page-title-main">Trypsin 1</span> Protein-coding gene in the species Homo sapiens

Trypsin-1, also known as cationic trypsinogen, is a protein that in humans is encoded by the PRSS1 gene. Trypsin-1 is the main isoform of trypsinogen secreted by pancreas, the others are trypsin-2, and trypsin-3 (meso-trypsinogen).

<span class="mw-page-title-main">SLPI</span> Protein-coding gene in the species Homo sapiens

Antileukoproteinase, also known as secretory leukocyte protease inhibitor (SLPI), is an enzyme that in humans is encoded by the SLPI gene. SLPI is a highly cationic single-chain protein with eight intramolecular disulfide bonds. It is found in large quantities in bronchial, cervical, and nasal mucosa, saliva, and seminal fluids. SLPI inhibits human leukocyte elastase, human cathepsin G, human trypsin, neutrophil elastase, and mast cell chymase. X-ray crystallography has shown that SLPI has two homologous domains of 53 and 54 amino acids, one of which exhibits anti-protease activity. The other domain is not known to have any function.

<span class="mw-page-title-main">SPINK1</span> Protein-coding gene in the species Homo sapiens

Pancreatic secretory trypsin inhibitor (PSTI) also known as serine protease inhibitor Kazal-type 1 (SPINK1) or tumor-associated trypsin inhibitor (TATI) is a protein that in humans is encoded by the SPINK1 gene.

<span class="mw-page-title-main">SPINT2</span> Protein-coding gene in the species Homo sapiens

Kunitz-type protease inhibitor 2 is an enzyme inhibitor that in humans is encoded by the SPINT2 gene. SPINT2 is a transmembrane protein with two extracellular Kunitz domains to inhibit serine proteases. This gene is a presumed tumor suppressor by inhibiting HGF activator which prevents the formation of active hepatocyte growth factor. Mutations in SPINT2 could result in congenital sodium diarrhea (CSD).

<span class="mw-page-title-main">Pancreatic lipase family</span> Mammalian protein found in Homo sapiens

Triglyceride lipases are a family of lipolytic enzymes that hydrolyse ester linkages of triglycerides. Lipases are widely distributed in animals, plants and prokaryotes.

<span class="mw-page-title-main">CELA3B</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 3B also known as elastase-3B, protease E, or fecal elastase is an enzyme that in humans is encoded by the CELA3B gene.

<span class="mw-page-title-main">CELA2A</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 2A is an enzyme that in humans is encoded by the CELA2A gene.

<span class="mw-page-title-main">CELA3A</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 3A is an enzyme that in humans is encoded by the CELA3A gene.

<span class="mw-page-title-main">CELA1</span> Enzyme-encoding gene in humans

Chymotrypsin-like elastase family member 1 (CELA1) also known as elastase-1 (ELA1) is an enzyme that in humans is encoded by the CELA1 gene. Elastases form a subfamily of serine proteases that hydrolyze many proteins in addition to elastin. Humans have six elastase genes which encode the structurally similar proteins elastase 1, 2, 2A, 2B, 3A, and 3B.

<span class="mw-page-title-main">CELA2B</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin-like elastase family member 2B is and enzyme that in humans is encoded by the CELA2B gene.

<span class="mw-page-title-main">Chymotrypsin-C</span> Protein-coding gene in the species Homo sapiens

Chymotrypsin C, also known as caldecrin or elastase 4, is an enzyme that in humans is encoded by the CTRC gene.

<span class="mw-page-title-main">Kunitz domain</span> InterPro Domain

Kunitz domains are the active domains of proteins that inhibit the function of protein degrading enzymes or, more specifically, domains of Kunitz-type are protease inhibitors. They are relatively small with a length of about 50 to 60 amino acids and a molecular weight of 6 kDa. Examples of Kunitz-type protease inhibitors are aprotinin, Alzheimer's amyloid precursor protein (APP), and tissue factor pathway inhibitor (TFPI). Kunitz STI protease inhibitor, the trypsin inhibitor initially studied by Moses Kunitz, was extracted from soybeans.

<span class="mw-page-title-main">Kazal domain</span>

The Kazal domain is an evolutionary conserved protein domain usually indicative of serine protease inhibitors. However, kazal-like domains are also seen in the extracellular part of agrins, which are not known to be protease inhibitors.

Pancreatic endopeptidase E is an enzyme. This enzyme catalyses the following chemical reaction

References

  1. Fletcher TS, Shen WF, Largman C (November 1987). "Primary structure of human pancreatic elastase 2 determined by sequence analysis of the cloned mRNA". Biochemistry. 26 (23): 7256–61. doi:10.1021/bi00397a010. PMID   3427074.
  2. Shirasu Y, Yoshida H, Matsuki S, Takemura K, Ikeda N, Shimada Y, Ozawa T, Mikayama T, Iijima H, Ishida A (December 1987). "Molecular cloning and expression in Escherichia coli of a cDNA encoding human pancreatic elastase 2". Journal of Biochemistry. 102 (6): 1555–63. doi:10.1093/oxfordjournals.jbchem.a122204. PMID   2834346.