Point-to-point (telecommunications)

Last updated • 3 min readFrom Wikipedia, The Free Encyclopedia

In telecommunications, a point-to-point connection refers to a communications connection between two communication endpoints or nodes. An example is a telephone call, in which one telephone is connected with one other, and what is said by one caller can only be heard by the other. This is contrasted with a point-to-multipoint or broadcast connection, in which many nodes can receive information transmitted by one node. Other examples of point-to-point communications links are leased lines and microwave radio relay.

Contents

The term is also used in computer networking and computer architecture to refer to a wire or other connection that links only two computers or circuits, as opposed to other network topologies such as buses or crossbar switches which can connect many communications devices.

Point-to-point is sometimes abbreviated as P2P. This usage of P2P is distinct from P2P meaning peer-to-peer in the context of file sharing networks or other data-sharing protocols between peers.

A traditional point-to-point data link is a communications medium with exactly two endpoints and no data or packet formatting. The host computers at either end take full responsibility for formatting the data transmitted between them. The connection between the computer and the communications medium was generally implemented through an RS-232 or similar interface. Computers in close proximity may be connected by wires directly between their interface cards.

When connected at a distance, each endpoint would be fitted with a modem to convert analog telecommunications signals into a digital data stream. When the connection uses a telecommunications provider, the connection is called a dedicated, leased, or private line. The ARPANET used leased lines to provide point-to-point data links between its packet-switching nodes, which were called Interface Message Processors.

A 1 Gbit/s point-to-point millimeter-wave link installed in the UAE CableFree MMW Link installed in UAE.jpg
A 1 Gbit/s point-to-point millimeter-wave link installed in the UAE
A point-to-point wireless unit with a built-in antenna at Huntington Beach, California RADWIN-point-to-point-wireless-Huntington-Beach.jpg
A point-to-point wireless unit with a built-in antenna at Huntington Beach, California

With the exception of passive optical networks, modern Ethernet is exclusively point-to-point on the physical layer – any cable only connects two devices. The term point-to-point telecommunications can also mean a wireless data link between two fixed points. The wireless communication is typically bi-directional and either time-division multiple access (TDMA) or channelized. This can be a microwave relay link consisting of a transmitter which transmits a narrow beam of microwaves with a parabolic dish antenna to a second parabolic dish at the receiver. It also includes technologies such as lasers which transmit data modulated on a light beam. These technologies require an unobstructed line of sight between the two points and thus are limited by the visual horizon to distances of about 40 miles (64 km). [lower-alpha 1]

Networking

In a local network, repeater hubs or switches provide basic connectivity. A hub provides a point-to-multipoint (or simply multipoint) circuit in which all connected client nodes share the network bandwidth. A switch on the other hand provides a series of point-to-point circuits, via microsegmentation, which allows each client node to have a dedicated circuit and the added advantage of having full-duplex connections.

From the OSI model's layer perspective, both switches and repeater hubs provide point-to-point connections on the physical layer. However, on the data link layer, a repeater hub provides point-to-multipoint connectivity – each frame is forwarded to all nodes – while a switch provides virtual point-to-point connections – each unicast frame is only forwarded to the destination node.

Within many switched telecommunications systems, it is possible to establish a permanent circuit. One example might be a telephone in the lobby of a public building, which is programmed to ring only the number of a telephone dispatcher. "Nailing down" a switched connection saves the cost of running a physical circuit between the two points. The resources in such a connection can be released when no longer needed, for example, a television circuit from a parade route back to the studio.

See also

Notes

  1. The Telecommunications Industry Association's engineering committees develop U.S. standards for point-to-point communications and related cellular tower structures. [1] Online tools help users find if they have such line of sight. [2]

Related Research Articles

<span class="mw-page-title-main">Ethernet</span> Computer networking technology

Ethernet is a family of wired computer networking technologies commonly used in local area networks (LAN), metropolitan area networks (MAN) and wide area networks (WAN). It was commercially introduced in 1980 and first standardized in 1983 as IEEE 802.3. Ethernet has since been refined to support higher bit rates, a greater number of nodes, and longer link distances, but retains much backward compatibility. Over time, Ethernet has largely replaced competing wired LAN technologies such as Token Ring, FDDI and ARCNET.

<span class="mw-page-title-main">General Packet Radio Service</span> Packet oriented mobile data service on 2G and 3G

General Packet Radio Service (GPRS), also called 2.5G, is a packet oriented mobile data standard on the 2G cellular communication network's global system for mobile communications (GSM). GPRS was established by European Telecommunications Standards Institute (ETSI) in response to the earlier CDPD and i-mode packet-switched cellular technologies. It is now maintained by the 3rd Generation Partnership Project (3GPP).

Multiprotocol Label Switching (MPLS) is a routing technique in telecommunications networks that directs data from one node to the next based on labels rather than network addresses. Whereas network addresses identify endpoints, the labels identify established paths between endpoints. MPLS can encapsulate packets of various network protocols, hence the multiprotocol component of the name. MPLS supports a range of access technologies, including T1/E1, ATM, Frame Relay, and DSL.

<span class="mw-page-title-main">Wireless LAN</span> Computer network that links devices using wireless communication within a limited area

A wireless LAN (WLAN) is a wireless computer network that links two or more devices using wireless communication to form a local area network (LAN) within a limited area such as a home, school, computer laboratory, campus, or office building. This gives users the ability to move around within the area and remain connected to the network. Through a gateway, a WLAN can also provide a connection to the wider Internet.

A network switch is networking hardware that connects devices on a computer network by using packet switching to receive and forward data to the destination device.

Circuit switching is a method of implementing a telecommunications network in which two network nodes establish a dedicated communications channel (circuit) through the network before the nodes may communicate. The circuit guarantees the full bandwidth of the channel and remains connected for the duration of the communication session. The circuit functions as if the nodes were physically connected as with an electrical circuit.

<span class="mw-page-title-main">Network topology</span> Arrangement of the elements of a communication network

Network topology is the arrangement of the elements of a communication network. Network topology can be used to define or describe the arrangement of various types of telecommunication networks, including command and control radio networks, industrial fieldbusses and computer networks.

<span class="mw-page-title-main">Repeater</span> Relay station

In telecommunications, a repeater is an electronic device that receives a signal and retransmits it. Repeaters are used to extend transmissions so that the signal can cover longer distances or be received on the other side of an obstruction. Some types of repeaters broadcast an identical signal, but alter its method of transmission, for example, on another frequency or baud rate.

<span class="mw-page-title-main">Time-division multiplexing</span> Multiplexing technique for digital signals

Time-division multiplexing (TDM) is a method of transmitting and receiving independent signals over a common signal path by means of synchronized switches at each end of the transmission line so that each signal appears on the line only a fraction of time in an alternating pattern. It can be used when the bit rate of the transmission medium exceeds that of the signal to be transmitted. This form of signal multiplexing was developed in telecommunications for telegraphy systems in the late 19th century, but found its most common application in digital telephony in the second half of the 20th century.

In a telecommunications network, a link is a communication channel that connects two or more devices for the purpose of data transmission. The link may be a dedicated physical link or a virtual circuit that uses one or more physical links or shares a physical link with other telecommunications links.

A virtual circuit (VC) is a means of transporting data over a data network, based on packet switching and in which a connection is first established across the network between two endpoints. The network, rather than having a fixed data rate reservation per connection as in circuit switching, takes advantage of the statistical multiplexing on its transmission links, an intrinsic feature of packet switching.

Data communication or digital communications, including data transmission and data reception, is the transfer and reception of data in the form of a digital bitstream or a digitized analog signal transmitted over a point-to-point or point-to-multipoint communication channel. Examples of such channels are copper wires, optical fibers, wireless communication using radio spectrum, storage media and computer buses. The data are represented as an electromagnetic signal, such as an electrical voltage, radiowave, microwave, or infrared signal.

In the IEEE 802 reference model of computer networking, the logical link control (LLC) data communication protocol layer is the upper sublayer of the data link layer of the seven-layer OSI model. The LLC sublayer acts as an interface between the medium access control (MAC) sublayer and the network layer.

<span class="mw-page-title-main">Communication channel</span> Physical or logical connection used for transmission of information

A communication channel refers either to a physical transmission medium such as a wire, or to a logical connection over a multiplexed medium such as a radio channel in telecommunications and computer networking. A channel is used for information transfer of, for example, a digital bit stream, from one or several senders to one or several receivers. A channel has a certain capacity for transmitting information, often measured by its bandwidth in Hz or its data rate in bits per second.

AX.25 is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used extensively on amateur packet radio networks.

In telecommunications networks, a node is either a redistribution point or a communication endpoint. The definition of a node depends on the network and protocol layer referred to. A physical network node is an electronic device that is attached to a network, and is capable of creating, receiving, or transmitting information over a communication channel. A passive distribution point such as a distribution frame or patch panel is consequently not a node.

RS-485, also known as TIA-485(-A) or EIA-485, is a standard, originally introduced in 1983, defining the electrical characteristics of drivers and receivers for use in serial communications systems. Electrical signaling is balanced, and multipoint systems are supported. The standard is jointly published by the Telecommunications Industry Association and Electronic Industries Alliance (TIA/EIA). Digital communications networks implementing the standard can be used effectively over long distances and in electrically noisy environments. Multiple receivers may be connected to such a network in a linear, multidrop bus. These characteristics make RS-485 useful in industrial control systems and similar applications.

Networking hardware, also known as network equipment or computer networking devices, are electronic devices that are required for communication and interaction between devices on a computer network. Specifically, they mediate data transmission in a computer network. Units which are the last receiver or generate data are called hosts, end systems or data terminal equipment.

A duplex communication system is a point-to-point system composed of two or more connected parties or devices that can communicate with one another in both directions. Duplex systems are employed in many communications networks, either to allow for simultaneous communication in both directions between two connected parties or to provide a reverse path for the monitoring and remote adjustment of equipment in the field. There are two types of duplex communication systems: full-duplex (FDX) and half-duplex (HDX).

<span class="mw-page-title-main">Computer network</span> Network that allows computers to share resources and communicate with each other

A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies.

References

  1. "TR-14 | Structural Standards for Communication and Small Wind Turbine Support Structures". Telecommunications Industry Association. Archived from the original on 2014-01-07. Retrieved 2011-11-20.
  2. "PtP Estimator Overview". AlphiMAX. Retrieved August 29, 2011.