Rhinitis medicamentosa

Last updated
Rhinitis medicamentosa
Other namesRebound congestion
Rhinitis medicamentosa mucosa nasal en.png
Specialty Otorhinolaryngology
Symptoms Nasal congestion
Usual onsetAfter 5–7 days of use of topical decongestant nasal sprays
CausesOveruse of decongestant nasal sprays and certain oral medications
PreventionLimiting use of decongestant nasal sprays and other potentially problematic medications
TreatmentCeasing use of offending medications

Rhinitis medicamentosa (or RM, also known as rebound congestion) is a condition of rebound nasal congestion suspected to be brought on by extended use of topical decongestants (e.g., oxymetazoline, phenylephrine, xylometazoline, and naphazoline nasal sprays) and certain oral medications (e.g., sympathomimetic amines and various 2-imidazolines) that constrict blood vessels in the lining of the nose, although evidence has been contradictory. [1]

Contents

Presentation

The characteristic presentation of RM involves nasal congestion without rhinorrhea, postnasal drip, or sneezing following several days of decongestant use. [2] This condition typically occurs after 5–7 days of use of topical decongestants. Patients often try increasing both the dose and the frequency of nasal sprays upon the onset of RM, worsening the condition. The swelling of the nasal passages caused by rebound congestion may eventually result in permanent turbinate hypertrophy, which may block nasal breathing until surgically removed. [3]

Commercial introduction of oxymetazoline brand Afrin. The prolonged use of nasal vasoconstrictors causes rhinitis medicamentosa. Nasal-vasoconstrictor.JPG
Commercial introduction of oxymetazoline brand Afrin. The prolonged use of nasal vasoconstrictors causes rhinitis medicamentosa.

Pathophysiology

The pathophysiology of RM is unclear, although several mechanisms involving norepinephrine signaling have been proposed. [2] RM is associated with histological changes that include: an increase in the number of lymphocytes and fibroblasts, epithelial cell denudation, epithelial edema, goblet cell hyperplasia, increased expression of the epidermal growth factor receptor, increased mucus production, nasociliary loss, inflammatory cell infiltration, and squamous cell metaplasia. [2]

Direct acting sympathomimetic amines, such as phenylephrine, stimulate alpha adrenergic receptors, while mixed-acting agents, such as pseudoephedrine can stimulate both alpha and beta adrenergic receptors directly and indirectly by releasing norepinephrine from sympathetic nerve terminals. [4] At first, the vasoconstrictive effect of alpha-receptors dominates, but with continued use of an alpha agonist, this effect fades first, allowing the vasodilation due to beta-receptor stimulation to emerge. [5]

2-Imidazoline derivatives, such as oxymetazoline, may participate in negative feedback on endogenous norepinephrine production. Therefore, after cessation of prolonged use, there will be inadequate sympathetic vasoconstriction in the nasal mucosa, and domination of parasympathetic activity can result in increased secretions and nasal edema. [6] [7] Evidence suggests that if oxymetazoline is used only nightly for allergic rhinitis (instead of more frequent dosage as may be directed on product label), it may be used longer than one week without high risk of rhinitis medicamentosa especially with use of intranasal steroid like fluticasone furoate. [8]

Treatment

The treatment of RM involves withdrawal of the offending nasal spray or oral medication. Both a "cold turkey" and a "weaning" approach can be used. Cold turkey is the most effective treatment method, as it directly removes the cause of the condition, yet the time period between the discontinuation of the drug and the relief of symptoms may be too long and uncomfortable for some individuals (particularly when trying to go to sleep when they are unable to breathe through their nose).

The use of over-the-counter (OTC) saline nasal sprays may help open the nose without causing RM if the spray does not contain a decongestant. [8] Symptoms of congestion and runny nose can often be treated with corticosteroid nasal sprays under the supervision of a physician. For very severe cases, oral steroids or nasal surgery may be necessary.

A study has shown that the anti-infective agent benzalkonium chloride, which is frequently added to topical nasal sprays as a preservative, aggravates the condition by further increasing the rebound swelling. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Sinusitis</span> An inflammation of the mucous membrane that lines the sinuses resulting in symptoms

Sinusitis, also known as rhinosinusitis, is an inflammation of the mucous membranes that line the sinuses resulting in symptoms that may include thick nasal mucus, a plugged nose, and facial pain. Other signs and symptoms may include fever, headaches, a poor sense of smell, sore throat, a feeling that phlegm is oozing out from the back of the nose to the throat along with a necessity to clear the throat frequently and frequent attacks of cough.

<span class="mw-page-title-main">Xylometazoline</span> Nasal decongestant

Xylometazoline, also spelled xylomethazoline, is a medication used to reduce symptoms of nasal congestion, allergic rhinitis, and sinusitis. Use is not recommended for more than seven days. Use is also not recommended in those less than three months of age and some say not less than 6 years of age. It is used directly in the nose as a spray or drops.

<span class="mw-page-title-main">Allergic rhinitis</span> Nasal inflammation due to allergens in the air

Allergic rhinitis, of which the seasonal type is called hay fever, is a type of inflammation in the nose that occurs when the immune system overreacts to allergens in the air. Signs and symptoms include a runny or stuffy nose, sneezing, red, itchy, and watery eyes, and swelling around the eyes. The fluid from the nose is usually clear. Symptom onset is often within minutes following allergen exposure, and can affect sleep and the ability to work or study. Some people may develop symptoms only during specific times of the year, often as a result of pollen exposure. Many people with allergic rhinitis also have asthma, allergic conjunctivitis, or atopic dermatitis.

Definition A decongestant, or nasal decongestant, is a type of pharmaceutical drug that is used to relieve nasal congestion in the upper respiratory tract. The active ingredient in most decongestants is either pseudoephedrine or phenylephrine. Intranasal corticosteroids can also be used as decongestants and antihistamines can be used to alleviate runny nose, nasal itch, and sneezing.

<span class="mw-page-title-main">Benzalkonium chloride</span> Surfactant and antiseptic agent

Benzalkonium chloride, also known as alkyldimethylbenzylammonium chloride (ADBAC) and by the trade name Zephiran, is a type of cationic surfactant. It is an organic salt classified as a quaternary ammonium compound. ADBACs have three main categories of use: as a biocide, a cationic surfactant, and a phase transfer agent. ADBACs are a mixture of alkylbenzyldimethylammonium chlorides, in which the alkyl group has various even-numbered alkyl chain lengths.

<span class="mw-page-title-main">Rhinitis</span> Irritation and inflammation of the mucous membrane inside the nose

Rhinitis, also known as coryza, is irritation and inflammation of the mucous membrane inside the nose. Common symptoms are a stuffy nose, runny nose, sneezing, and post-nasal drip.

Topical decongestants are decongestants applied directly to the nasal cavity. Their effectiveness by themselves in the common cold appears to have a small benefit in adults.

<span class="mw-page-title-main">Nasal spray</span> Spray that delivers medications locally in the nasal cavities or systemically

Nasal sprays are used to deliver medications locally in the nasal cavities or systemically. They are used locally for conditions such as nasal congestion and allergic rhinitis. In some situations, the nasal delivery route is preferred for systemic therapy because it provides an agreeable alternative to injection or pills. Substances can be assimilated extremely quickly and directly through the nose. Many pharmaceutical drugs exist as nasal sprays for systemic administration. Other applications include hormone replacement therapy, treatment of Alzheimer's disease and Parkinson's disease. Nasal sprays are seen as a more efficient way of transporting drugs with potential use in crossing the blood–brain barrier.

<span class="mw-page-title-main">Phenylephrine</span> Decongestant medication

Phenylephrine is a medication used as a decongestant for uncomplicated nasal congestion, used to dilate the pupil, used to increase blood pressure, and used to relieve hemorrhoids. It can be taken by mouth, as a nasal spray, given by injection into a vein or muscle, or applied to the skin.

<span class="mw-page-title-main">Oxymetazoline</span> Topical decongestant

Oxymetazoline, sold under the brand name Afrin among others, is a topical decongestant and vasoconstrictor medication. It is available over-the-counter as a nasal spray to treat nasal congestion and nosebleeds, as eyedrops to treat eye redness due to minor irritation, and as a prescription topical cream to treat persistent facial redness due to rosacea in adults. Its effects begin within minutes and last for up to six hours. Intranasal use for longer than three days may cause congestion to recur or worsen, resulting in physical dependence.

Nasal congestion is the partial or complete blockage of nasal passages, leading to impaired nasal breathing, usually due to membranes lining the nose becoming swollen from inflammation of blood vessels.

<span class="mw-page-title-main">Post-nasal drip</span> Medical condition

Post-nasal drip (PND), also known as upper airway cough syndrome (UACS), occurs when excessive mucus is produced by the nasal mucosa. The excess mucus accumulates in the back of the nose, and eventually in the throat once it drips down the back of the throat. It can be caused by rhinitis, sinusitis, gastroesophageal reflux disease (GERD), or by a disorder of swallowing. Other causes can be allergy, cold, flu, and side effects from medications.

<span class="mw-page-title-main">Naphazoline</span> Chemical compound

Naphazoline is a medicine used as a decongestant, and a vasoconstrictor added to eye drops to relieve red eye. It has a rapid action in reducing swelling when applied to mucous membranes. It is a sympathomimetic agent with marked alpha adrenergic activity that acts on alpha-receptors in the arterioles of the conjunctiva to produce constriction, resulting in decreased congestion.

<span class="mw-page-title-main">Prazosin</span> Antihypertensive drug

Prazosin, sold under the brand name Minipress among others, is a medication used to treat high blood pressure, symptoms of an enlarged prostate, and nightmares related to post-traumatic stress disorder (PTSD). It is an α1 blocker. It is a less preferred treatment of high blood pressure. Other uses may include heart failure and Raynaud syndrome. It is taken by mouth.

<span class="mw-page-title-main">Levomethamphetamine</span> Nasal decongestant and optical isomer of methamphetamine

Levomethamphetamine is the levorotatory (L-enantiomer) form of methamphetamine. Levomethamphetamine is a sympathomimetic vasoconstrictor that is the active ingredient in some over-the-counter (OTC) nasal decongestant inhalers in the United States.

<span class="mw-page-title-main">Azelastine</span> Chemical compound

Azelastine, sold under the brand name Optivar among others, is a H1 receptor-blocking medication primarily used as a nasal spray to treat allergic rhinitis (hay fever) and as eye drops for allergic conjunctivitis. Other uses may include asthma and skin rashes for which it is taken by mouth. Onset of effects is within minutes when used in the eyes and within an hour when used in the nose. Effects last for up to 12 hours.

<span class="mw-page-title-main">Mometasone</span> Steroid medication

Mometasone, also known as mometasone y 3 s, is a steroid medication used to treat certain skin conditions, hay fever, and asthma. Specifically it is used to prevent rather than treat asthma attacks. It can be applied to the skin, inhaled, or used in the nose. Mometasone furoate, not mometasone, is used in medical products.

<span class="mw-page-title-main">Mast cell stabilizer</span> Category of pharmaceutical drugs

Mast cell stabilizers are medications used to prevent or control certain allergic disorders. They block mast cell degranulation, stabilizing the cell and thereby preventing the release of histamine and related mediators. One suspected pharmacodynamic mechanism is the blocking of IgE-regulated calcium channels. Without intracellular calcium, the histamine vesicles cannot fuse to the cell membrane and degranulate.

<span class="mw-page-title-main">Alpha-adrenergic agonist</span> Class of drugs

Alpha-adrenergic agonists are a class of sympathomimetic agents that selectively stimulates alpha adrenergic receptors. The alpha-adrenergic receptor has two subclasses α1 and α2. Alpha 2 receptors are associated with sympatholytic properties. Alpha-adrenergic agonists have the opposite function of alpha blockers. Alpha adrenoreceptor ligands mimic the action of epinephrine and norepinephrine signaling in the heart, smooth muscle and central nervous system, with norepinephrine being the highest affinity. The activation of α1 stimulates the membrane bound enzyme phospholipase C, and activation of α2 inhibits the enzyme adenylate cyclase. Inactivation of adenylate cyclase in turn leads to the inactivation of the secondary messenger cyclic adenosine monophosphate and induces smooth muscle and blood vessel constriction.

Nonallergic rhinitis is rhinitis—inflammation of the inner part of the nose—not caused by an allergy. Nonallergic rhinitis displays symptoms including chronic sneezing or having a congested, drippy nose, without an identified allergic reaction. Other common terms for nonallergic rhinitis are vasomotor rhinitis and perennial rhinitis. The prevalence of nonallergic rhinitis in otolaryngology is 40%. Allergic rhinitis is more common than nonallergic rhinitis; however, both conditions have similar presentation, manifestation and treatment. Nasal itching and paroxysmal sneezing are usually associated with nonallergic rhinitis rather than allergic rhinitis.

References

  1. Mortuaire, G.; de Gabory, L.; François, M.; Massé, G.; Bloch, F.; Brion, N.; Jankowski, R.; Serrano, E. (June 2013). "Rebound congestion and rhinitis medicamentosa: Nasal decongestants in clinical practice. Critical review of the literature by a medical panel". European Annals of Otorhinolaryngology, Head and Neck Diseases. 130 (3): 137–144. doi: 10.1016/j.anorl.2012.09.005 . PMID   23375990.
  2. 1 2 3 Ramey JT, Bailen E, Lockey RF (2006). "Rhinitis medicamentosa" (PDF). Journal of Investigational Allergology and Clinical Immunology. 16 (3): 148–155. PMID   16784007 . Retrieved 29 April 2015.
  3. Rhinitis Medicamentosa at eMedicine
  4. Adams, H. Richard (2013). "Adrenergic Agonists and Antagonists". In Riviere, Jim E.; Papich, Mark G. (eds.). Veterinary Pharmacology and Therapeutics. John Wiley & Sons. pp. 125–56. ISBN   978-1-118-68590-7.
  5. Passàli, Desiderio; Salerni, Lorenzo; Passàli, Giulio Cesare; Passàli, Francesco Maria; Bellussi, Luisa (18 October 2006). "Nasal decongestants in the treatment of chronic nasal obstruction: efficacy and safety of use" (PDF). Expert Opinion on Drug Safety. 5 (6): 783–790. doi:10.1517/14740338.5.6.783. hdl: 2108/102185 . PMID   17044805. S2CID   43718145.
  6. Lacroix, Jean-Silvain (1989). "Adrenergic and non-adrenergic mechanisms in sympathetic vascular control of nasal mucosa". Acta Physiologica Scandinavica Supplementum. 581: 1–49. PMID   2568728.
  7. Elwany, Samy S.; Stephanos, Wahid M. (1983). "Rhinitis medicamentosa: An experimental histopathological and histochemical study". ORL. 45 (4): 187–194. doi:10.1159/000275642. PMID   6192384.
  8. 1 2 Baroody, Fuad M.; Brown, David; Gavanescu, Laura; DeTineo, Marcy; Naclerio, Robert M. (April 2011). "Oxymetazoline adds to the effectiveness of fluticasone furoate in the treatment of perennial allergic rhinitis". Journal of Allergy and Clinical Immunology. 127 (4): 927–934. doi: 10.1016/j.jaci.2011.01.037 . PMID   21377716.
  9. Graf, P.; Hallen, H.; Juto, J.-E. (May 1995). "Benzalkonium chloride in a decongestant nasal spray aggravates rhinitis medicamentosa in healthy volunteers". Clinical & Experimental Allergy. 25 (5): 395–400. doi:10.1111/j.1365-2222.1995.tb01069.x. PMID   7553241. S2CID   19989791.

Further reading