![]() | |
Company type | Manufacturing |
---|---|
Industry | Communications |
Founded | 1928 |
Headquarters | Chicago, Illinois, United States |
Products | Teleprinter equipment |
The Teletype Corporation, a part of American Telephone and Telegraph Company's Western Electric manufacturing arm since 1930, came into being in 1928 when the Morkrum-Kleinschmidt Company changed its name to the name of its trademark equipment. [1] Teletype was responsible for the research, development and manufacture of data and record communications equipment, but it is primarily remembered for the manufacture of electromechanical teleprinters.
Because of the nature of its business, as stated in the corporate charter, Teletype Corporation was allowed a unique mode of operation within Western Electric. It was organized as a separate entity, and contained all the elements necessary for a separate corporation. Teletype's charter permitted the sale of equipment to customers outside the AT&T Bell System, which explained their need for a separate sales force. The primary customer outside of the Bell System was the United States Government.
The Teletype Corporation continued in this manner until January 8, 1982, the date of settlement of United States v. AT&T , a 1974 United States Department of Justice antitrust suit against AT&T. At that time, Western Electric was fully absorbed into AT&T as AT&T Technologies, and the Teletype Corporation became AT&T Teletype. The last vestiges of what had been the Teletype Corporation ceased in 1990, bringing to a close the dedicated teleprinter business. One of the three Teletype manufacturing buildings in Skokie, Illinois remains in use as a parking garage for a shopping center.[ citation needed ]
The Teletype Corporation had its roots in the Morkrum Company. In 1902, electrical engineer Frank Pearne approached Joy Morton, head of Morton Salt, seeking a sponsor for Pearne's research into the practicalities of developing a printing telegraph system. Joy Morton needed to determine whether this was worthwhile and so consulted mechanical engineer Charles Krum, who was vice president of the Western Cold Storage Company, which was run by Morton’s brother Mark Morton. Krum was interested in helping Pearne, so space was set up in a laboratory in the attic of Western Cold Storage. Frank Pearne lost interest in the project after a year, [2] and left to become a teacher at Armour Institute, now Illinois Institute of Technology. Krum was prepared to continue Pearne’s work, and in August 1903 a patent was filed for a "typebar page printer". [3]
The present-day Pearne family disputes the claim that their ancestor lost interest, saying that Morton didn't pay him enough to support his family and that is why he left.[ citation needed ] It is perhaps noteworthy that many of the engineering staff of Teletype were educated at Armour/IIT, beginning with Howard Krum.
In 1904, Krum filed a patent for a "type wheel printing telegraph machine" [4] which was issued in August 1907.
In 1906, the Morkrum Company was formed, with the company name combining the Morton and Krum names and reflecting the financial assistance provided by Joy Morton. This is the time when Charles Krum's son, Howard Krum, joined his father in this work. It was Howard who developed and patented the start-stop synchronizing method for code telegraph systems, which made possible the practical teleprinter. [5]
In 1908, a working teleprinter was produced, called the Morkrum Printing Telegraph, which was field tested with the Alton Railroad.
In 1910, the Morkrum Company designed and installed the first commercial teletypewriter system on Postal Telegraph Company lines between Boston and New York City using the "Blue Code Version" of the Morkrum Printing Telegraph. [6] [7]
In 1925, the Morkrum Company and the Kleinschmidt Electric Company merged to form the Morkrum-Kleinschmidt Company.
In December 1928, the company changed its name to the less cumbersome "Teletype Corporation".
In 1930, the Teletype Corporation was purchased by the American Telephone and Telegraph Company for $30,000,000 in stock and became a subsidiary of the Western Electric Company. [8] While some principals in the Teletype Corporation retired, Howard Krum stayed on as a consultant. Sterling Morton, who no doubt got his job as President of Teletype because of his family's investments in the company, became head of the family's salt business. Although he was not educated as an engineer he seems to have had quite an aptitude for invention, as evidenced by his name on several of the company's patents.
In 1974, the Teletype Corporation, being a Western Electric company subsidiary, went on strike with its 1400 International Brotherhood of Electrical Workers employee members at Little Rock over improved benefits, pay increases, and cost‐of‐living adjustments. A ratified contract was agreed on September 3, 1974 with other Western Electric plants to end the strike; however, the contract was subject to ratification at the Arkansas plant. [9]
In 1916, Kleinschmidt filed a patent application for a type-bar page printer [20] This printer utilized Baudot code but did not utilize the start-stop synchronization technology that Howard Krum had previously patented. The type-bar printer was intended for use on multiplex circuits, and its printing was controlled from a local segment on a receiving distributor of the sunflower type. In 1919, Kleinschmidt appeared to be concerned chiefly with development of multiplex transmitters for use with this printer. [21] Kleinschmidt made his Kleinschmidt keyboard perforator which was later manufactured by Teletype.
Teletype models and their dates:
Starting with the Model 28, Teletype page printer model numbers were often modified by letters indicating the configuration. The configurations, in increasing order of equipment level and cost, were:
Not all models came in all three configurations. Teletype Corporation documents suffixed the configuration to the model number, e.g., "Model 33 ASR" (Model 33 Automatic Send and Receive). In contrast, some customers and users tended to place the configuration before the model number, e.g., "ASR-33".
The U.S. military had their own system of identifying the various models, often identifying various improvements, included options / features, etc. The TT-47/UG was the first Model 28 KSR, and while Teletype's designation for the basic machine remained the same over the next 20+ years, the TT-47/UG took on suffixes to identify the specific version. The last TT-47/UG was the TT-47L/UG. The U.S. Navy also assigned some "set" designations using the standard Army/Navy system, such as the AN/UGC-5, a Teletype Model 28 ASR which has a keyboard, printer, tape punch and reader facilities all in one cabinet.
ASCII, an acronym for American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. ASCII has just 128 code points, of which only 95 are printable characters, which severely limit its scope. The set of available punctuation had significant impact on the syntax of computer languages and text markup. ASCII hugely influenced the design of character sets used by modern computers, including Unicode which has over a million code points, but the first 128 of these are the same as ASCII.
The Baudot code is an early character encoding for telegraphy invented by Émile Baudot in the 1870s. It was the predecessor to the International Telegraph Alphabet No. 2 (ITA2), the most common teleprinter code in use before ASCII. Each character in the alphabet is represented by a series of five bits, sent over a communication channel such as a telegraph wire or a radio signal by asynchronous serial communication. The symbol rate measurement is known as baud, and is derived from the same name.
Radioteletype (RTTY) is a telecommunications system consisting originally of two or more electromechanical teleprinters in different locations connected by radio rather than a wired link. Radioteletype evolved from earlier landline teleprinter operations that began in the mid-1800s. The US Navy Department successfully tested printing telegraphy between an airplane and ground radio station in 1922. Later that year, the Radio Corporation of America successfully tested printing telegraphy via their Chatham, Massachusetts, radio station to the RMS Majestic. Commercial RTTY systems were in active service between San Francisco and Honolulu as early as April 1932 and between San Francisco and New York City by 1934. The US military used radioteletype in the 1930s and expanded this usage during World War II. From the 1980s, teleprinters were replaced by personal computers (PCs) running software to emulate teleprinters.
A teleprinter is an electromechanical device that can be used to send and receive typed messages through various communications channels, in both point-to-point and point-to-multipoint configurations.
Punched tape or perforated paper tape is a form of data storage device that consists of a long strip of paper through which small holes are punched. It was developed from and was subsequently used alongside punched cards, the difference being that the tape is continuous.
Chad refers to fragments sometimes created when holes are made in a paper, card or similar synthetic materials, such as computer punched tape or punched cards. The word "chad" has been used both as a mass noun and as a countable noun.
Asynchronous serial communication is a form of serial communication in which the communicating endpoints' interfaces are not continuously synchronized by a common clock signal. Instead of a common synchronization signal, the data stream contains synchronization information in form of start and stop signals, before and after each unit of transmission, respectively. The start signal prepares the receiver for arrival of data and the stop signal resets its state to enable triggering of a new sequence.
Creed & Company was a British telecommunications company founded by Frederick George Creed which was an important pioneer in the field of teleprinter machines. It was merged into the International Telephone and Telegraph Corporation (ITT) in 1928.
The Teletype Model 33 is an electromechanical teleprinter designed for light-duty office use. It is less rugged and cost less than earlier Teletype models. The Teletype Corporation introduced the Model 33 as a commercial product in 1963, after it had originally been designed for the United States Navy. The Model 33 was produced in three versions:
In computer communications, enquiry is a transmission-control character that requests a response from the receiving station with which a connection has been set up. It represents a signal intended to trigger a response at the receiving end, to see whether it is still present. The response, an answer-back code to the terminal that transmitted the WRU signal, may include station identification, the type of equipment in service, and the status of the remote station.
Kleinschmidt Inc. was established in 1931 by Edward Kleinschmidt. It is a privately owned firm that provides electronic commerce, electronic data interchange, and value-added network services. Its headquarters are in Deerfield, Illinois.
The Bendix G-20 computer was introduced in 1961 by the Bendix Corporation, Computer Division, Los Angeles, California. The G-20 followed the highly successful G-15 vacuum-tube computer. Bendix sold its computer division to Control Data Corporation in 1963, effectively terminating the G-20.
Edward Ernst Kleinschmidt was a German-American engineer. He was one of the inventors of the teleprinter, and obtained 118 patents over the course of his lifetime.
The DECwriter series was a family of computer terminals from Digital Equipment Corporation (DEC). They were typically used in a fashion similar to a teletype, with a computer output being printed to paper and the user inputting information on the keyboard. In contrast to teletypes, the DECwriters were based on dot matrix printer technology, one of the first examples of such a system to be introduced. Versions lacking a keyboard were also available for use as computer printers, which eventually became the only models as smart terminals became the main way to interact with mainframes and minicomputers in the 1980s.
Telex is a telecommunication service that provides text-based message exchange over the circuits of the public switched telephone network or by private lines. The technology operates on switched station-to-station basis with teleprinter devices at the receiving and sending locations. Telex was a major method of sending text messages electronically between businesses in the post–World War II period. Its usage went into decline as the fax machine grew in popularity in the 1980s.
Donald Murray was an electrical engineer and the inventor of a telegraphic typewriter system using an extended Baudot code that was a direct ancestor of the teleprinter. He can justifiably be called the "Father of the remote Typewriter".
The Teletype Model 28 is a product line of page printers, typing and non-typing tape perforator and tape reperforators, fixed head single contact and pivoted head multi-contact transmitter-distributors, and receiving selector equipment. Regarded as the most rugged machines Teletype Corporation built, this line of teleprinters used an exchangeable type box for printing and sequential selector "Stunt Box" to mechanically initiate non-printing functions within the typing unit of the page printer, electrically control functions within the page printer and electrically control external equipment.
Charles Lyon Krum was a key figure in the development of the teleprinter, a machine which played a key role in the history of telegraphy and computing.
The Teletype Model 37 is an electromechanical teleprinter manufactured by the Teletype Corporation in 1968. Unfortunately the end was approaching for electromechanical user interfaces and a year later in 1969 the Computer Terminal Corporation introduced the electronic terminal with a screen.
The Kleinschmidt keyboard perforator is a telegraph instrument invented by Edward Kleinschmidt which prepares punched tape for telegraph transmission. A QWERTY keyboard operate hole punches that prepare a Wheatstone slip. Each Morse code of the dots and dashes for the letter is selected by projecting tongues on the key bar. The centre holes used for the paper feed are punched first, then the lower holes, and then the upper holes. The upper holes are the mark holes, which indicate when the symbol starts, and the lower hole tell when to terminate the symbol. This keyboard can be operated at up to 80 words a minute by a skilled operator.