Tissot's indicatrix

Last updated
The Behrmann projection with Tissot's indicatrices Tissot behrmann.png
The Behrmann projection with Tissot's indicatrices
The Mercator projection with Tissot's indicatrices Tissot mercator.png
The Mercator projection with Tissot's indicatrices

In cartography, a Tissot's indicatrix (Tissot indicatrix, Tissot's ellipse, Tissot ellipse, ellipse of distortion) (plural: "Tissot's indicatrices") is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map. Tissot proved that the resulting diagram is an ellipse whose axes indicate the two principal directions along which scale is maximal and minimal at that point on the map.


A single indicatrix describes the distortion at a single point. Because distortion varies across a map, generally Tissot's indicatrices are placed across a map to illustrate the spatial change in distortion. A common scheme places them at each intersection of displayed meridians and parallels. These schematics are important in the study of map projections, both to illustrate distortion and to provide the basis for the calculations that represent the magnitude of distortion precisely at each point.

There is a one-to-one correspondence between the Tissot indicatrix and the metric tensor of the map projection coordinate conversion. [1]


Tissot's theory was developed in the context of cartographic analysis. Generally the geometric model represents the Earth, and comes in the form of a sphere or ellipsoid.

Tissot's indicatrices illustrate linear, angular, and areal distortions of maps:

In conformal maps, where each point preserves angles projected from the geometric model, the Tissot's indicatrices are all circles of size varying by location, possibly also with varying orientation (given the four circle quadrants split by meridians and parallels). In equal-area projections, where area proportions between objects are conserved, the Tissot's indicatrices all have the same area, though their shapes and orientations vary with location. In arbitrary projections, both area and shape vary across the map.


Tissot's indicatrix Indicatrix.png
Tissot's indicatrix

In the adjacent image, ABCD is a circle with unit area defined in a spherical or ellipsoidal model of the Earth, and A′B′C′D′ is the Tissot's indicatrix that results from its projection onto the plane. Segment OA is transformed in OA′, and segment OB is transformed into OB′. Linear scale is not conserved along these two directions, since OA′ is not equal to OA and OB′ is not equal to OB. Angle MOA, in the unit area circle, is transformed in angle M′OA′ in the distortion ellipse. Because M′OA′  MOA, we know that there is an angular distortion. The area of circle ABCD is, by definition, equal to 1. Because the area of ellipse A′B′ is less than 1, a distortion of area has occurred.

In dealing with a Tissot indicatrix, different notions of radius come into play. The first is the infinitesimal radius of the original circle. The resulting ellipse of distortion will also have infinitesimal radius, but by the mathematics of differentials, the ratios of these infinitesimal values are finite. So, for example, if the resulting ellipse of distortion is the same size of infinitesimal as on the sphere, then its radius is considered to be 1. Lastly, the size that the indicatrix gets drawn for human inspection on the map is arbitrary. When an array of indicatrices is drawn on a map, they are all scaled by the same arbitrary amount so that their sizes are proportionally correct.

Like M in the diagram, the axes from O along the parallel and along the meridian may undergo a change of length and a rotation when projecting. It is common in the literature to represent scale along the meridian as h and scale along the parallel as k, for a given point. Likewise, the angle between meridian and parallel might have changed from 90° to some other value. Indeed, unless the map is conformal, all angles except the one subtended by the semi-major axis and semi-minor axis of the ellipse might have changed. A particular angle will have changed the most, and value of that maximum change is known as the angular deformation, denoted as θ′. Generally which angle that is and how it is oriented do not figure prominently in distortion analysis. It is the value of the change that is significant. The values of h, k, and θ′ can be computed as follows. [2] :24

where φ and λ are latitude and longitude, x and y are projected coordinates, and R is the radius of the globe.

As results, a and b represent the maximum and minimum scale factors at the point, which is the same thing as the semimajor and semiminor axes of the Tissot ellipse; s represents the amount of inflation or deflation in area (also given by ab); and ω represents the maximum angular distortion at the point.

For the Mercator projection, and any other conformal projection, h = k and θ′ = 90° so that each ellipse degenerates into a circle with the radius h = k being equal to the scale factor in any direction at that point.

For the sinusoidal projection, and any other equal-area projection, the semi-major axis of the ellipse is the reciprocal of the semi-minor axis so that every ellipse has the same area even though their eccentricities vary.

For arbitrary projections, neither the shape nor the area of the ellipses are related to each other in general. [3]

An alternative derivation for numerical computation

Another way to understand and derive Tissot's indicatrix is through the differential geometry of surfaces. [4] This approach lends itself well to modern numerical methods, as the parameters of Tissot's indicatrix can be computed using singular value decomposition (SVD) and central difference approximation.

Differential distance on the ellipsoid

Let a 3D point, , on an ellipsoid be parameterized as:

where are longitude and latitude, respectively, and is a function of the equatorial radius, , and eccentricity, :

The element of distance on the sphere, is defined by the first fundamental form:

whose coefficients are defined as:

Computing the necessary derivatives gives:

where is a function of the equatorial radius, , and the ellipsoid eccentricity, :

Substituting these values into the first fundamental form gives the formula for elemental distance on the ellipsoid:

This result relates the measure of distance on the ellipsoid surface as a function of the spherical coordinate system.

Transforming the element of distance

Recall that the purpose of Tissot's indicatrix is to relate how distances on the sphere change when mapped to a planar surface. Specifically, the desired relation is the transform that relates differential distance along the bases of the spherical coordinate system to differential distance along the bases of the Cartesian coordinate system on the planar map. This can be expressed by the relation:

where and represent the computation of along the longitudinal and latitudinal axes, respectively. Computation of and can be performed directly from the equation above, yielding:

For the purposes of this computation, it is useful to express this relationship as a matrix operation:

Now, in order to relate the distances on the ellipsoid surface to those on the plane, we need to relate the coordinate systems. From the chain rule, we can write:

where J is the Jacobian matrix:

Plugging in the matrix expression for and yields the definition of the transform represented by the indicatrix:

This transform encapsulates the mapping from the ellipsoid surface to the plane. Expressed in this form, SVD can be used to parcel out the important components of the local transformation.

Numerical computation and SVD

In order to extract the desired distortion information, at any given location in the spherical coordinate system, the values of can be computed directly. The Jacobian, , can be computed analytically from the mapping function itself, but it is often simpler to numerically approximate the values at any location on the map using central differences. Once these values are computed, SVD can be applied to each transformation matrix to extract the local distortion information. Remember that, because distortion is local, every location on the map will have its own transformation.

Recall the definition of SVD:

It is the decomposition of the transformation, , into a rotation in the source domain (i.e. the ellipsoid surface), , a scaling along the basis, , and a subsequent second rotation, . For understanding distortion, the first rotation is irrelevant, as it rotates the axes of the circle but has no bearing on the final orientation of the ellipse. The next operation, represented by the diagonal singular value matrix, scales the circle along its axes, deforming it to an ellipse. Thus, the singular values represent the scale factors along axes of the ellipse. The first singular value provides the semi-major axis, , and the second provides the semi-minor axis, , which are the directional scaling factors of distortion. Scale distortion can be computed as the area of the ellipse, , or equivalently by the determinant of . Finally, the orientation of the ellipse, , can be extracted from the first column of as:

See also

Related Research Articles

Latitude geographic coordinate specifying north–south position

In geography, latitude is a geographic coordinate that specifies the north–south position of a point on the Earth's surface. Latitude is an angle which ranges from 0° at the Equator to 90° at the poles. Lines of constant latitude, or parallels, run east–west as circles parallel to the equator. Latitude is used together with longitude to specify the precise location of features on the surface of the Earth. On its own, the term latitude should be taken to be the geodetic latitude as defined below. Briefly, geodetic latitude at a point is the angle formed by the vector perpendicular to the ellipsoidal surface from that point, and the equatorial plane. Also defined are six auxiliary latitudes that are used in special applications.

Mercator projection Map projection for navigational use that distorts areas far from the equator

The Mercator projection is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because of its unique property of representing any course of constant bearing as a straight segment. Such a course, known as a rhumb or, mathematically, a loxodrome, is preferred in marine navigation because ships can sail in a constant compass direction for long stretches, reducing the difficult, error-prone course corrections that otherwise would be needed frequently when sailing other kinds of courses. Linear scale is constant on the Mercator in every direction around any point, thus preserving the angles and the shapes of small objects and fulfilling the conditions of a conformal map projection. As a side effect, the Mercator projection inflates the size of objects away from the equator. This inflation is very small near the equator but accelerates with increasing latitude to become infinite at the poles. So, for example, landmasses such as Greenland and Antarctica appear far larger than they actually are relative to landmasses near the equator, such as Central Africa.

Spherical coordinate system 3-dimensional coordinate system

In mathematics, a spherical coordinate system is a coordinate system for three-dimensional space where the position of a point is specified by three numbers: the radial distance of that point from a fixed origin, its polar angle measured from a fixed zenith direction, and the azimuthal angle of its orthogonal projection on a reference plane that passes through the origin and is orthogonal to the zenith, measured from a fixed reference direction on that plane. It can be seen as the three-dimensional version of the polar coordinate system.

Ellipsoid Quadric surface that looks like a deformed sphere

An ellipsoid is a surface that may be obtained from a sphere by deforming it by means of directional scalings, or more generally, of an affine transformation.

In the mathematical field of differential geometry, one definition of a metric tensor is a type of function which takes as input a pair of tangent vectors v and w at a point of a surface and produces a real number scalar g(v, w) in a way that generalizes many of the familiar properties of the dot product of vectors in Euclidean space. In the same way as a dot product, metric tensors are used to define the length of and angle between tangent vectors. Through integration, the metric tensor allows one to define and compute the length of curves on the manifold.

Rhumb line arc crossing all meridians of longitude at the same angle

In navigation, a rhumb line, rhumb, or loxodrome is an arc crossing all meridians of longitude at the same angle, that is, a path with constant bearing as measured relative to true or magnetic north.

Great-circle distance shortest distance between two points along the surface of a sphere

The great-circle distance or orthodromic distance is the shortest distance between two points on the surface of a sphere, measured along the surface of the sphere. The distance between two points in Euclidean space is the length of a straight line between them, but on the sphere there are no straight lines. In spaces with curvature, straight lines are replaced by geodesics. Geodesics on the sphere are circles on the sphere whose centers coincide with the center of the sphere, and are called great circles.

In geodesy, conversion among different geographic coordinate systems is made necessary by the different geographic coordinate systems in use across the world and over time. Coordinate conversion is composed of a number of different types of conversion: format change of geographic coordinates, conversion of coordinate systems, or transformation to different geodetic datums. Geographic coordinate conversion has applications in cartography, surveying, navigation and geographic information systems.

Mollweide projection map projection

The Mollweide projection is an equal-area, pseudocylindrical map projection generally used for global maps of the world or night sky. It is also known as the Babinet projection, homalographic projection, homolographic projection, and elliptical projection. The projection trades accuracy of angle and shape for accuracy of proportions in area, and as such is used where that property is needed, such as maps depicting global distributions.

In mathematics, the associated Legendre polynomials are the canonical solutions of the general Legendre equation

Scale (map) Ratio of distance on a map to the corresponding distance on the ground

The scale of a map is the ratio of a distance on the map to the corresponding distance on the ground. This simple concept is complicated by the curvature of the Earth's surface, which forces scale to vary across a map. Because of this variation, the concept of scale becomes meaningful in two distinct ways.

The Schwarzschild solution describes spacetime under the influence of a massive, non-rotating, spherically symmetric object. It is considered by some to be one of the simplest and most useful solutions to the Einstein field equations.

Great-circle navigation

Great-circle navigation or orthodromic navigation is the practice of navigating a vessel along a great circle. Such routes yield the shortest distance between two points on the globe.

Winkel tripel projection Compromise map projection defined as the arithmetic mean of the equirectangular projection and the Aitoff projection

The Winkel tripel projection, a modified azimuthal map projection of the world, is one of three projections proposed by German cartographer Oswald Winkel in 1921. The projection is the arithmetic mean of the equirectangular projection and the Aitoff projection: The name tripel refers to Winkel's goal of minimizing three kinds of distortion: area, direction, and distance.

Cassini projection map projection

The Cassini projection is a map projection described by César-François Cassini de Thury in 1745. It is the transverse aspect of the equirectangular projection, in that the globe is first rotated so the central meridian becomes the "equator", and then the normal equirectangular projection is applied. Considering the earth as a sphere, the projection is composed of the operations:

Gravitational lensing formalism type of formalism

In general relativity, a point mass deflects a light ray with impact parameter by an angle approximately equal to

Geographical distance Distance measured along the surface of the earth

Geographical distance is the distance measured along the surface of the earth. The formulae in this article calculate distances between points which are defined by geographical coordinates in terms of latitude and longitude. This distance is an element in solving the second (inverse) geodetic problem.

Equidistant conic projection conic map projection

The equidistant conic projection is a conic map projection commonly used for maps of small countries as well as for larger regions such as the continental United States that are elongated east-to-west.

The article Transverse Mercator projection restricts itself to general features of the projection. This article describes in detail one of the (two) implementations developed by Louis Krüger in 1912; that expressed as a power series in the longitude difference from the central meridian. These series were recalculated by Lee in 1946, by Redfearn in 1948, and by Thomas in 1952. They are often referred to as the Redfearn series, or the Thomas series. This implementation is of great importance since it is widely used in the U.S. State Plane Coordinate System, in national and also international mapping systems, including the Universal Transverse Mercator coordinate system (UTM). They are also incorporated into the Geotrans coordinate converter made available by the United States National Geospatial-Intelligence Agency. When paired with a suitable geodetic datum, the series deliver high accuracy in zones less than a few degrees in east-west extent.

Geodesics on an ellipsoid application of geodesics on ellipsoid geometries

The study of geodesics on an ellipsoid arose in connection with geodesy specifically with the solution of triangulation networks. The figure of the Earth is well approximated by an oblate ellipsoid, a slightly flattened sphere. A geodesic is the shortest path between two points on a curved surface, analogous to a straight line on a plane surface. The solution of a triangulation network on an ellipsoid is therefore a set of exercises in spheroidal trigonometry.


  1. Goldberg, David M.; Gott III, J. Richard (2007). "Flexion and Skewness in Map Projections of the Earth" (PDF). Cartographica. 42 (4): 297–318. arXiv: astro-ph/0608501 . doi:10.3138/carto.42.4.297 . Retrieved 2011-11-14.
  2. Snyder, John P. (1987). Map projections—A working manual. Professional Paper 1395. Denver: USGS. p. 383. ISBN   978-1782662228 . Retrieved 2015-11-26.
  3. More general example of Tissot's indicatrix: the Winkel tripel projection.
  4. Laskowski, Piotr (1989). "The Traditional and Modern Look at Tissot's Indicatrix". The American Cartographer. 16 (2): 123–133.