Uridine kinase

Last updated
uridine kinase
1xrj.jpg
Uridine-cytidine kinase 2, tetramer, Human
Identifiers
EC no. 2.7.1.48
CAS no. 9026-39-5
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins

In enzymology, an uridine kinase (EC 2.7.1.48) is an enzyme that catalyzes the chemical reaction

ATP + uridine ADP + UMP

Thus, the two substrates of this enzyme are ATP and uridine, whereas its two products are ADP and UMP.

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:uridine 5'-phosphotransferase. Other names in common use include pyrimidine ribonucleoside kinase, uridine-cytidine kinase, uridine kinase (phosphorylating), and uridine phosphokinase. This enzyme participates in pyrimidine metabolism.

Structural studies

As of late 2007, 8 structures have been solved for this class of enzymes, with PDB accession codes 1UDW, 1UEI, 1UEJ, 1UFQ, 1UJ2, 1XRJ, 2JEO, and 2UVQ.

Related Research Articles

<span class="mw-page-title-main">Nucleotide</span> Biological molecules that form the building blocks of nucleic acids

Nucleotides are organic molecules composed of a nitrogenous base, a pentose sugar and a phosphate. They serve as monomeric units of the nucleic acid polymers – deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), both of which are essential biomolecules within all life-forms on Earth. Nucleotides are obtained in the diet and are also synthesized from common nutrients by the liver.

<span class="mw-page-title-main">Uridine monophosphate synthase</span> Protein-coding gene in the species Homo sapiens

The enzyme Uridine monophosphate synthase catalyses the formation of uridine monophosphate (UMP), an energy-carrying molecule in many important biosynthetic pathways. In humans, the gene that codes for this enzyme is located on the long arm of chromosome 3 (3q13).

A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides are synthesized from intermediates in their degradative pathway.

<span class="mw-page-title-main">Nucleic acid metabolism</span> Process

Nucleic acid metabolism is a collective term that refers to the variety of chemical reactions by which nucleic acids are either synthesized or degraded. Nucleic acids are polymers made up of a variety of monomers called nucleotides. Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides. Both synthesis and degradation reactions require multiple enzymes to facilitate the event. Defects or deficiencies in these enzymes can lead to a variety of diseases.

Pyrimidine biosynthesis occurs both in the body and through organic synthesis.

<span class="mw-page-title-main">CTP synthetase</span> Enzyme

CTP synthase is an enzyme involved in pyrimidine biosynthesis that interconverts UTP and CTP.

<span class="mw-page-title-main">Orotate phosphoribosyltransferase</span>

Orotate phosphoribosyltransferase (OPRTase) or orotic acid phosphoribosyltransferase is an enzyme involved in pyrimidine biosynthesis. It catalyzes the formation of orotidine 5'-monophosphate (OMP) from orotate and phosphoribosyl pyrophosphate. In yeast and bacteria, orotate phosphoribosyltransferase is an independent enzyme with a unique gene coding for the protein, whereas in mammals and other multicellular organisms, the catalytic function is carried out by a domain of the bifunctional enzyme UMP synthase (UMPS).

<span class="mw-page-title-main">Deoxyuridine monophosphate</span> Chemical compound

Deoxyuridine monophosphate (dUMP), also known as deoxyuridylic acid or deoxyuridylate in its conjugate acid and conjugate base forms, respectively, is a deoxynucleotide.

In enzymology, a 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a cytidylate kinase is an enzyme that catalyzes the chemical reaction

In enzymology, an ethanolamine kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Guanylate kinase</span>

In enzymology, a guanylate kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Homoserine kinase</span> Enzyme

In enzymology, a homoserine kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a protein-histidine pros-kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a protein-histidine tele-kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a pseudouridine kinase is an enzyme that catalyzes the chemical reaction

In enzymology, a thiamine-diphosphate kinase is an enzyme involved in thiamine metabolism. It catalyzes the chemical reaction

In enzymology, an UMP kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">UCK2</span> Protein-coding gene in the species Homo sapiens

Uridine-cytidine kinase 2 (UCK2) is an enzyme that in humans is encoded by the UCK2 gene.

<span class="mw-page-title-main">CMP kinase</span> Protein-coding gene in the species Homo sapiens

UMP-CMP kinase is an enzyme that in humans is encoded by the CMPK1 gene.

References