2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase

Last updated
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
Identifiers
EC no. 2.7.7.60
CAS no. 251990-59-7
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Gene Ontology AmiGO / QuickGO
Search
PMC articles
PubMed articles
NCBI proteins
IspD
PDB 1w77 EBI.jpg
2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) from Arabidopsis thaliana
Identifiers
SymbolIspD
Pfam PF01128
Pfam clan CL0110
InterPro IPR001228
PROSITE PDOC00997
SCOP2 1inj / SCOPe / SUPFAM
Available protein structures:
Pfam   structures / ECOD  
PDB RCSB PDB; PDBe; PDBj
PDBsum structure summary

In enzymology, a 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (EC 2.7.7.60) is an enzyme that catalyzes the chemical reaction:

Contents

2-C-methyl-D-erythritol 4-phosphate + CTP diphosphate + 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol

Thus, the two substrates of this enzyme are CTP and 2-C-methyl-D-erythritol 4-phosphate, whereas its two products are diphosphate and 4-diphosphocytidyl-2-C-methylerythritol.

This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing nucleotide groups (nucleotidyltransferases).

This enzyme participates in isoprenoid biosynthesis and stenvenosim. It catalyzes the third step of the MEP pathway; the formation of CDP-ME (4-diphosphocytidyl-2C-methyl-D-erythritol) from CTP and MEP (2C-methyl-D-erythritol 4-phosphate). [1] The isoprenoid pathway is a well known target for anti-infective drug development. [2] [3]

Nomenclature

The systematic name of this enzyme class is CTP:2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase. This enzyme is also called:

It is normally abbreviated IspD. It is also referenced by the open reading frame YgbP.

Structural studies

The crystal structure of the E. coli 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase 1I52, 1INI & 1INJ, reported by Richard et al. (2001), was the first one for an enzyme involved in the MEP pathway.

As of February 2010, 13 other structures have been solved for this class of enzymes, with PDB accession codes 1H3M, 1VGT, 1VGU, 1VGZ, 1VPA, 1VGW, 1W55, 1W57, 1W77,2PX7, 2VSI, 3F1C and 2VSH.

Related Research Articles

<span class="mw-page-title-main">Mevalonate pathway</span>

The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are used to make isoprenoids, a diverse class of over 30,000 biomolecules such as cholesterol, vitamin K, coenzyme Q10, and all steroid hormones.

<span class="mw-page-title-main">Isopentenyl pyrophosphate</span> Chemical compound

Isopentenyl pyrophosphate is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids.

(<i>E</i>)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate Chemical compound

(E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP or HMB-PP) is an intermediate of the MEP pathway (non-mevalonate pathway) of isoprenoid biosynthesis. The enzyme HMB-PP synthase (GcpE, IspG) catalyzes the conversion of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate (MEcPP) into HMB-PP. HMB-PP is then converted further to isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) by HMB-PP reductase (LytB, IspH).

The non-mevalonate pathway—also appearing as the mevalonate-independent pathway and the 2-C-methyl-D-erythritol 4-phosphate/1-deoxy-D-xylulose 5-phosphate (MEP/DOXP) pathway—is an alternative metabolic pathway for the biosynthesis of the isoprenoid precursors isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). The currently preferred name for this pathway is the MEP pathway, since MEP is the first committed metabolite on the route to IPP.

<span class="mw-page-title-main">DXP reductoisomerase</span>

DXP reductoisomerase is an enzyme that interconverts 1-deoxy-D-xylulose 5-phosphate (DXP) and 2-C-methyl-D-erythritol 4-phosphate (MEP).

2-<i>C</i>-Methylerythritol 4-phosphate Chemical compound

2-C-Methyl-D-erythritol 4-phosphate (MEP) is an intermediate on the MEP pathway of isoprenoid precursor biosynthesis. It is the first committed metabolite on that pathway on the route to IPP and DMAPP.

In enzymology, a 4-hydroxy-3-methylbut-2-en-1-yl diphosphate synthase (HMB-PP synthase, IspG, EC 1.17.7.1) is an enzyme that catalyzes the chemical reaction

2-C-Methyl-D-erythritol 2,4-cyclodiphosphate synthase is a zinc-dependent enzyme and a member of the YgbB N terminal protein domain, which participates in the MEP pathway of isoprenoid precursor biosynthesis. It catalyzes the following reaction:

In enzymology, a 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase is an enzyme that catalyzes the chemical reaction

Choline-phosphate cytidylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, an ethanolamine-phosphate cytidylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glucose-1-phosphate cytidylyltransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a glycerol-3-phosphate cytidylyltransferase is an enzyme that catalyzes the chemical reaction

Phosphatidate cytidylyltransferase (CDS) is the enzyme that catalyzes the synthesis of CDP-diacylglycerol from cytidine triphosphate and phosphatidate.

2-C-Methyl-<small>D</small>-erythritol-2,4-cyclopyrophosphate Chemical compound

2-C-Methyl-d-erythritol-2,4-cyclopyrophosphate (MEcPP) is an intermediate in the MEP pathway (non-mevalonate) of isoprenoid precursor biosynthesis. MEcPP is produced by MEcPP synthase (IspF) and is a substrate for HMB-PP synthase (IspG).

4-Diphosphocytidyl-2-C-methylerythritol is an intermediate in the MEP pathway of isoprenoid precursor biosynthesis. It is produced by the enzyme 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase (IspD) and is a substrate for CDP-ME kinase (IspE).

4-Diphosphocytidyl-2-C-methyl-D-erythritol 2-phosphate is an intermediate in the MEP pathway of isoprenoid precursor biosynthesis.

4-Hydroxy-3-methylbut-2-enyl diphosphate reductase (EC 1.17.1.2, isopentenyl-diphosphate:NADP+ oxidoreductase, LytB, (E)-4-hydroxy-3-methylbut-2-en-1-yl diphosphate reductase, HMBPP reductase, IspH, LytB/IspH) is an enzyme in the non-mevalonate pathway. It acts upon (E)-4-Hydroxy-3-methyl-but-2-enyl pyrophosphate (or "HMB-PP").

<span class="mw-page-title-main">YgbB N terminal protein domain</span>

In molecular biology, YgbB is a protein domain. This entry makes reference to a number of proteins from eukaryotes and prokaryotes which share this common N-terminal signature and appear to be involved in terpenoid biosynthesis. The YgbB protein is a putative enzyme thought to aid terpenoid and isoprenoid biosynthesis, a vital chemical in all living organisms. This protein domain is part of an enzyme which catalyses a reaction in a complex pathway.

Michel Rohmer, born on 31 January 1948, is a French chemist specialising in the chemistry of micro-organisms. He has particularly studied isoprenoids.

References

  1. Rohdich F, Wungsintaweekul J, Eisenreich W, Richter G, Schuhr CA, Hecht S, Zenk MH, Bacher A (June 2000). "Biosynthesis of terpenoids: 4-diphosphocytidyl-2C-methyl-D-erythritol synthase of Arabidopsis thaliana". Proceedings of the National Academy of Sciences of the United States of America. 97 (12): 6451–6. Bibcode:2000PNAS...97.6451R. doi: 10.1073/pnas.97.12.6451 . PMC   18623 . PMID   10841550.
  2. Illarionova V, Kaiser J, Ostrozhenkova E, Bacher A, Fischer M, Eisenreich W, Rohdich F (November 2006). "Nonmevalonate terpene biosynthesis enzymes as antiinfective drug targets: substrate synthesis and high-throughput screening methods". J. Org. Chem. 71 (23): 8824–34. doi:10.1021/jo061466o. PMID   17081012.
  3. Eoh H, Brown AC, Buetow L, Hunter WN, Parish T, Kaur D, Brennan PJ, Crick DC (December 2007). "Characterization of the Mycobacterium tuberculosis 4-diphosphocytidyl-2-C-methyl-D-erythritol synthase: potential for drug development". J. Bacteriol. 189 (24): 8922–7. doi:10.1128/JB.00925-07. PMC   2168624 . PMID   17921290.

Further reading

This article incorporates text from the public domain Pfam and InterPro: IPR001228