6000 (number)

Last updated
5999 6000 6001
Cardinal six thousand
Ordinal 6000th
(six thousandth)
Factorization 24 × 3 × 53
Greek numeral ,Ϛ´
Roman numeral VM, or VI
Unicode symbol(s)VM, vm, VI, vi
Binary 10111011100002
Ternary 220200203
Senary 434406
Octal 135608
Duodecimal 358012
Hexadecimal 177016
Armenian Ց

6000 (six thousand) is the natural number following 5999 and preceding 6001.

Contents

Selected numbers in the range 6001–6999

6001 to 6099

6100 to 6199

6200 to 6299

6300 to 6399

6400 to 6499

6500 to 6599

6600 to 6699

6700 to 6799

6800 to 6899

6900 to 6999

Prime numbers

There are 117 prime numbers between 6000 and 7000: [26] [27]

6007, 6011, 6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113, 6121, 6131, 6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229, 6247, 6257, 6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337, 6343, 6353, 6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469, 6473, 6481, 6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599, 6607, 6619, 6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719, 6733, 6737, 6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841, 6857, 6863, 6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967, 6971, 6977, 6983, 6991, 6997

See also

Related Research Articles

83 (eighty-three) is the natural number following 82 and preceding 84.

1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.

300 is the natural number following 299 and preceding 301.

400 is the natural number following 399 and preceding 401.

500 is the natural number following 499 and preceding 501.

700 is the natural number following 699 and preceding 701.

600 is the natural number following 599 and preceding 601.

800 is the natural number following 799 and preceding 801.

900 is the natural number following 899 and preceding 901. It is the square of 30 and the sum of Euler's totient function for the first 54 positive integers. In base 10, it is a Harshad number. It is also the first number to be the square of a sphenic number.

2000 is a natural number following 1999 and preceding 2001.

3000 is the natural number following 2999 and preceding 3001. It is the smallest number requiring thirteen letters in English.

4000 is the natural number following 3999 and preceding 4001. It is a decagonal number.

5000 is the natural number following 4999 and preceding 5001. Five thousand is, at the same time, the largest isogrammic numeral, and the smallest number that contains every one of the five vowels in the English language.

7000 is the natural number following 6999 and preceding 7001.

8000 is the natural number following 7999 and preceding 8001.

204 is the natural number following 203 and preceding 205.

253 is the natural number following 252 and preceding 254.

20,000 is the natural number that comes after 19,999 and before 20,001.

30,000 is the natural number that comes after 29,999 and before 30,001.

9000 is the natural number following 8999 and preceding 9001.

References

  1. 1 2 3 4 Sloane, N. J. A. (ed.). "SequenceA069099(Centered heptagonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  2. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA001106(9-gonal (or enneagonal or nonagonal) numbers: a(n) = n*(7*n-5)/2.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  3. Sloane, N. J. A. (ed.). "SequenceA100827(Highly cototient numbers: records for a(n) in A063741.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  4. Sloane, N. J. A. (ed.). "SequenceA005900(Octahedral numbers: a(n) = n*(2*n^2 + 1)/3.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  5. Sloane, N. J. A. (ed.). "SequenceA001599(Harmonic or Ore numbers: numbers k such that the harmonic mean of the divisors of k is an integer.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  6. 1 2 Sloane, N. J. A. (ed.). "SequenceA000330(Square pyramidal numbers: a(n) = 0^2 + 1^2 + 2^2 + ... + n^2 = n*(n+1)*(2*n+1)/6.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  7. 1 2 Sloane, N. J. A. (ed.). "SequenceA016754(Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  8. Sloane, N. J. A. (ed.). "SequenceA076980(Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  9. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA001107(10-gonal (or decagonal) numbers: a(n) = n*(4*n-3).)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  10. Gardner, Martin (September–October 1997), "The numerology of Dr. Rashad Khalifa", Skeptical Inquirer, archived from the original on 2004-09-27
  11. Sloane, N. J. A. (ed.). "SequenceA002411(Pentagonal pyramidal numbers: a(n) = n^2*(n+1)/2.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  12. Sloane, N. J. A. (ed.). "SequenceA002559(Markoff (or Markov) numbers: union of positive integers x, y, z satisfying x^2 + y^2 + z^2 = 3*x*y*z.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  13. 1 2 3 Sloane, N. J. A. (ed.). "SequenceA100827(Highly cototient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  14. Sloane, N. J. A. (ed.). "SequenceA007053(Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  15. Sloane, N. J. A. (ed.). "SequenceA000292(Tetrahedral (or triangular pyramidal) numbers: a(n) = C(n+2,3) = n*(n+1)*(n+2)/6.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  16. Sloane, N. J. A. (ed.). "SequenceA082897(Perfect totient numbers)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  17. Sloane, N. J. A. (ed.). "SequenceA002997(Carmichael numbers: composite numbers k such that a^(k-1) == 1 (mod k) for every a coprime to k.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  18. Sloane, N. J. A. (ed.). "SequenceA001628(Convolved Fibonacci numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  19. Sloane, N. J. A. (ed.). "SequenceA000217(Triangular numbers: a(n) = binomial(n+1,2) = n*(n+1)/2 = 0 + 1 + 2 + ... + n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  20. Sloane, N. J. A. (ed.). "SequenceA060544(Centered 9-gonal (also known as nonagonal or enneagonal) numbers. Every third triangular number, starting with a(1)=1)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  21. Sloane, N. J. A. (ed.). "SequenceA069132(Centered 19-gonal numbers.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  22. Sloane, N. J. A. (ed.). "SequenceA000045(Fibonacci numbers: F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  23. Sloane, N. J. A. (ed.). "SequenceA006958(Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  24. Sloane, N. J. A. (ed.). "SequenceA000219(Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  25. Sloane, N. J. A. (ed.). "SequenceA014575(Vampire numbers (definition 2): numbers n with an even number of digits which have a factorization n = i*j where i and j have the same number of digits and the multiset of the digits of n coincides with the multiset of the digits of i and j.)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  26. Sloane, N. J. A. (ed.). "SequenceA038823(Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences . OEIS Foundation.
  27. Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.