5-cube | 5-orthoplex | 5-demicube |
In 5-dimensional geometry, there are 31 uniform polytopes with B5 symmetry. There are two regular forms, the 5-orthoplex, and 5-cube with 10 and 32 vertices respectively. The 5-demicube is added as an alternation of the 5-cube.
Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. A mathematician who works in the field of geometry is called a geometer.
In geometry, a uniform 5-polytope is a five-dimensional uniform polytope. By definition, a uniform 5-polytope is vertex-transitive and constructed from uniform 4-polytope facets.
In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.
They can be visualized as symmetric orthographic projections in Coxeter planes of the B5 Coxeter group, and other subgroups.
Orthographic projection is a means of representing three-dimensional objects in two dimensions. It is a form of parallel projection, in which all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface. The obverse of an orthographic projection is an oblique projection, which is a parallel projection in which the projection lines are not orthogonal to the projection plane.
Symmetric orthographic projections of these 32 polytopes can be made in the B5, B4, B3, B2, A3, Coxeter planes. Ak has [k+1] symmetry, and Bk has [2k] symmetry.
These 32 polytopes are each shown in these 5 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
# | Graph B5 / A4 [10] | Graph B4 / D5 [8] | Graph B3 / A2 [6] | Graph B2 [4] | Graph A3 [4] | Coxeter-Dynkin diagram and Schläfli symbol Johnson and Bowers names |
---|---|---|---|---|---|---|
1 | h{4,3,3,3} 5-demicube Hemipenteract (hin) | |||||
2 | {4,3,3,3} 5-cube Penteract (pent) | |||||
3 | t1{4,3,3,3} = r{4,3,3,3} Rectified 5-cube Rectified penteract (rin) | |||||
4 | t2{4,3,3,3} = 2r{4,3,3,3} Birectified 5-cube Penteractitriacontiditeron (nit) | |||||
5 | t1{3,3,3,4} = r{3,3,3,4} Rectified 5-orthoplex Rectified triacontiditeron (rat) | |||||
6 | {3,3,3,4} 5-orthoplex Triacontiditeron (tac) | |||||
7 | t0,1{4,3,3,3} = t{3,3,3,4} Truncated 5-cube Truncated penteract (tan) | |||||
8 | t1,2{4,3,3,3} = 2t{4,3,3,3} Bitruncated 5-cube Bitruncated penteract (bittin) | |||||
9 | t0,2{4,3,3,3} = rr{4,3,3,3} Cantellated 5-cube Rhombated penteract (sirn) | |||||
10 | t1,3{4,3,3,3} = 2rr{4,3,3,3} Bicantellated 5-cube Small birhombi-penteractitriacontiditeron (sibrant) | |||||
11 | t0,3{4,3,3,3} Runcinated 5-cube Prismated penteract (span) | |||||
12 | t0,4{4,3,3,3} = 2r2r{4,3,3,3} Stericated 5-cube Small celli-penteractitriacontiditeron (scant) | |||||
13 | t0,1{3,3,3,4} = t{3,3,3,4} Truncated 5-orthoplex Truncated triacontiditeron (tot) | |||||
14 | t1,2{3,3,3,4} = 2t{3,3,3,4} Bitruncated 5-orthoplex Bitruncated triacontiditeron (bittit) | |||||
15 | t0,2{3,3,3,4} = rr{3,3,3,4} Cantellated 5-orthoplex Small rhombated triacontiditeron (sart) | |||||
16 | t0,3{3,3,3,4} Runcinated 5-orthoplex Small prismated triacontiditeron (spat) | |||||
17 | t0,1,2{4,3,3,3} = tr{4,3,3,3} Cantitruncated 5-cube Great rhombated penteract (girn) | |||||
18 | t1,2,3{4,3,3,3} = tr{4,3,3,3} Bicantitruncated 5-cube Great birhombi-penteractitriacontiditeron (gibrant) | |||||
19 | t0,1,3{4,3,3,3} Runcitruncated 5-cube Prismatotruncated penteract (pattin) | |||||
20 | t0,2,3{4,3,3,3} Runcicantellated 5-cube Prismatorhomated penteract (prin) | |||||
21 | t0,1,4{4,3,3,3} Steritruncated 5-cube Cellitruncated penteract (capt) | |||||
22 | t0,2,4{4,3,3,3} Stericantellated 5-cube Cellirhombi-penteractitriacontiditeron (carnit) | |||||
23 | t0,1,2,3{4,3,3,3} Runcicantitruncated 5-cube Great primated penteract (gippin) | |||||
24 | t0,1,2,4{4,3,3,3} Stericantitruncated 5-cube Celligreatorhombated penteract (cogrin) | |||||
25 | t0,1,3,4{4,3,3,3} Steriruncitruncated 5-cube Celliprismatotrunki-penteractitriacontiditeron (captint) | |||||
26 | t0,1,2,3,4{4,3,3,3} Omnitruncated 5-cube Great celli-penteractitriacontiditeron (gacnet) | |||||
27 | t0,1,2{3,3,3,4} = tr{3,3,3,4} Cantitruncated 5-orthoplex Great rhombated triacontiditeron (gart) | |||||
28 | t0,1,3{3,3,3,4} Runcitruncated 5-orthoplex Prismatotruncated triacontiditeron (pattit) | |||||
29 | t0,2,3{3,3,3,4} Runcicantellated 5-orthoplex Prismatorhombated triacontiditeron (pirt) | |||||
30 | t0,1,4{3,3,3,4} Steritruncated 5-orthoplex Cellitruncated triacontiditeron (cappin) | |||||
31 | t0,1,2,3{3,3,3,4} Runcicantitruncated 5-orthoplex Great prismatorhombated triacontiditeron (gippit) | |||||
32 | t0,1,2,4{3,3,3,4} Stericantitruncated 5-orthoplex Celligreatorhombated triacontiditeron (cogart) |
In 8-dimensional geometry, there are 255 uniform polytopes with E8 symmetry. The three simplest forms are the 421, 241, and 142 polytopes, composed of 240, 2160 and 17280 vertices respectively.
In 7-dimensional geometry, there are 127 uniform polytopes with E7 symmetry. The three simplest forms are the 321, 231, and 132 polytopes, composed of 56, 126, and 576 vertices respectively.
In 6-dimensional geometry, there are 39 uniform polytopes with E6 symmetry. The two simplest forms are the 221 and 122 polytopes, composed of 27 and 72 vertices respectively.
In geometry of five dimensions or higher, a cantic 5-cube, cantihalf 5-cube, truncated 5-demicube is a uniform 5-polytope, being a truncation of the 5-demicube. It has half the vertices of a cantellated 5-cube.
In eight-dimensional geometry, a pentellated 8-simplex is a convex uniform 8-polytope with 5th order truncations of the regular 8-simplex.
In 8-dimensional geometry, there are 135 uniform polytopes with A8 symmetry. There is one self-dual regular form, the 8-simplex with 9 vertices.
In 7-dimensional geometry, there are 128 uniform polytopes with B7 symmetry. There are two regular forms, the 7-orthoplex, and 8-cube with 14 and 128 vertices respectively. The 7-demicube is added with half of the symmetry.
In 7-dimensional geometry, there are 71 uniform polytopes with A7 symmetry. There is one self-dual regular form, the 7-simplex with 8 vertices.
In 6-dimensional geometry, there are 35 uniform polytopes with A6 symmetry. There is one self-dual regular form, the 6-simplex with 7 vertices.
In 6-dimensional geometry, there are 64 uniform polytopes with B6 symmetry. There are two regular forms, the 6-orthoplex, and 6-cube with 12 and 64 vertices respectively. The 6-demicube is added with half the symmetry.
In 6-dimensional geometry, there are 47 uniform polytopes with D6 symmetry, 16 are unique, and 31 are shared with the B6 symmetry. There are two regular forms, the 6-orthoplex, and 6-demicube with 12 and 32 vertices respectively.
In 7-dimensional geometry, there are 95 uniform polytopes with D7 symmetry; 32 are unique, and 63 are shared with the B7 symmetry. There are two regular forms, the 7-orthoplex, and 7-demicube with 14 and 64 vertices respectively.
In 5-dimensional geometry, there are 19 uniform polytopes with A5 symmetry. There is one self-dual regular form, the 5-simplex with 6 vertices.
In 5-dimensional geometry, there are 23 uniform polytopes with D5 symmetry, 8 are unique, and 15 are shared with the B5 symmetry. There are two special forms, the 5-orthoplex, and 5-demicube with 10 and 16 vertices respectively.
In six-dimensional geometry, a runcic 5-cube or is a convex uniform 5-polytope. There are 2 runcic forms for the 5-cube. Runcic 5-cubes have half the vertices of runcinated 5-cubes.
In seven-dimensional geometry, a cantic 7-cube or truncated 7-demicube as a uniform 7-polytope, being a truncation of the 7-demicube.
In 4-dimensional geometry, there are 9 uniform polytopes with A4 symmetry. There is one self-dual regular form, the 5-cell with 5 vertices.
In 4-dimensional geometry, there are 15 uniform 4-polytopes with B4 symmetry. There are two regular forms, the tesseract, and 16-cell with 16 and 8 vertices respectively.
In 4-dimensional geometry, there are 7 uniform 4-polytopes with reflections of D4 symmetry, all are shared with higher symmetry constructions in the B4 or F4 symmetry families. there is also one half symmetry alternation, the snub 24-cell.
Harold Scott MacDonald "Donald" Coxeter, FRS, FRSC, was a British-born Canadian geometer. Coxeter is regarded as one of the greatest geometers of the 20th century. He was born in London, received his BA (1929) and PhD (1931) from Cambridge, but lived in Canada from age 29. He was always called Donald, from his third name MacDonald. He was most noted for his work on regular polytopes and higher-dimensional geometries. He was a champion of the classical approach to geometry, in a period when the tendency was to approach geometry more and more via algebra.
The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.
Fundamental convex regular and uniform polytopes in dimensions 2–10 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Family | An | Bn | I2(p) / Dn | E6 / E7 / E8 / F4 / G2 | Hn | |||||||
Regular polygon | Triangle | Square | p-gon | Hexagon | Pentagon | |||||||
Uniform polyhedron | Tetrahedron | Octahedron • Cube | Demicube | Dodecahedron • Icosahedron | ||||||||
Uniform 4-polytope | 5-cell | 16-cell • Tesseract | Demitesseract | 24-cell | 120-cell • 600-cell | |||||||
Uniform 5-polytope | 5-simplex | 5-orthoplex • 5-cube | 5-demicube | |||||||||
Uniform 6-polytope | 6-simplex | 6-orthoplex • 6-cube | 6-demicube | 122 • 221 | ||||||||
Uniform 7-polytope | 7-simplex | 7-orthoplex • 7-cube | 7-demicube | 132 • 231 • 321 | ||||||||
Uniform 8-polytope | 8-simplex | 8-orthoplex • 8-cube | 8-demicube | 142 • 241 • 421 | ||||||||
Uniform 9-polytope | 9-simplex | 9-orthoplex • 9-cube | 9-demicube | |||||||||
Uniform 10-polytope | 10-simplex | 10-orthoplex • 10-cube | 10-demicube | |||||||||
Uniform n-polytope | n-simplex | n-orthoplex • n-cube | n-demicube | 1k2 • 2k1 • k21 | n-pentagonal polytope | |||||||
Topics: Polytope families • Regular polytope • List of regular polytopes and compounds |