Climate change in Ethiopia

Last updated
Koppen-Geiger Map ETH present.svg
Köppen climate classification map for Ethiopia for 1980–2016
Koppen-Geiger Map ETH future.svg
2071–2100 map under the worst climate change scenario. Mid-range scenarios are currently considered more likely [1] [2] [3]

Climate change in Ethiopia is affecting the people in Ethiopia due to increased floods, heat waves and infectious diseases. [4] In the Awash basin in central Ethiopia floods and droughts are common. Agriculture in the basin is mainly rainfed (without irrigation systems). This applies to around 98% of total cropland as of 2012. So changes in rainfall patterns due to climate change will reduce economic activities in the basin. [5] Rainfall shocks have a direct impact on agriculture. A rainfall decrease in the Awash basin could lead to a 5% decline in the basin's overall GDP. The agricultural GDP could even drop by as much as 10%. [5]

Contents

Impact on the natural environment

Temperature and weather changes

Between 1960 and 2006, the mean annual temperature increased by 1.3°C. On average, the rate would be 0.28°C in temperature per decade. [6] [7] A study from 2008 predicted further warming of 0.7°C and 2.3°C by 2020s and 1.4°C by 2050s. [8]

Rainfall, droughts and floods

Rainfall regimes vary across Ethiopia. Left figure: Annual average rainfall in mm/day with the interquartile range (25th-75th) of monthly rainfall in mm/day indicated by black contours (1981-2020). Right figure: Three rainfall zones in Ethiopia with different seasonal rainfall patterns. The green zone has two separate rainy seasons, and the red zone has a single peak in rainfall in Jun to September. Ethiopia rainfall and seasons.png
Rainfall regimes vary across Ethiopia. Left figure: Annual average rainfall in mm/day with the interquartile range (25th–75th) of monthly rainfall in mm/day indicated by black contours (1981–2020). Right figure: Three rainfall zones in Ethiopia with different seasonal rainfall patterns. The green zone has two separate rainy seasons, and the red zone has a single peak in rainfall in Jun to September.

Ethiopia has two main wet seasons per year. It rains in the spring and summer. These seasonal patterns of rainfall vary a lot across the country. [10] [11] Western Ethiopia has a seasonal rainfall pattern that is similar to the Sahel. It has rainfall from February to November (which is decreasing to the north), and has peak rainfall from June to September. Southern Ethiopia has a rainfall pattern similar to the one in East Africa. There are two distinct wet seasons every year, February to May, and October to November. [12] [11] Central and eastern Ethiopia has some rainfall between February and November, with a smaller peak in rainfall from March to May and a second higher peak from June to September. [11]

Cattle herd in riverbed of Afar Region Cattle herd in riverbed Afar Ethiopia.jpg
Cattle herd in riverbed of Afar Region
Gilgel Abbay during flood Gilgel Abay during flood.jpg
Gilgel Abbay during flood

In 2022 Ethiopia had one of the most severe La Niña-induced droughts in the last forty years. It came about due to four consecutive rainy seasons which did not produce enough rain. [13] This drought increased water insecurity for more than 8 million pastoralists and agro-pastoralists in the Somali, Oromia, SNNP and South-West regions. About 7.2 million people needed food aid, and 4.4 million people needed help to access water. Food prices have increased a lot due to the drought conditions. Many people in the affected area have experienced food shortages due to the water insecurity situation. [13]

The exact attribution of climate change to the occurrence of droughts and floods in Ethiopia is difficult. One study from 2022 stated for Ethiopia: "While regional models predict increase in rainfall, higher resolution analyses for Ethiopia suggest spatial variations in which there are both increases and decreases in the overall rainfall averages. An increase in the rainfall variability is also predicted, with a rising frequency of both extreme flooding and droughts that could seriously affect agricultural production." [4]

Significant droughts lead to drying of water resources and eventually water scarcity. Subsequent outcomes include poor hygiene and can lead to faeco-oral transmission of disease. [4]

In 2016, deadly floods hit Ethiopia, leaving at least 200 people dead and over 200,000 people homeless as seasonal rains came early to the country. [14] Causes for floods can be deforestation, presence of rivers such as the Baro, Akobo, Gilo, and Alwero, in low lying homogeneous topography and climate change. [4]

Due to an increase in heavy rainfall events, floods are likely to become more severe when they do occur. [15] :1155 The interactions between rainfall and flooding are complex. There are some regions in which flooding is expected to become rarer. This depends on several factors. These include changes in rain and snowmelt, but also soil moisture. [15] :1156 Climate change leaves soils drier in some areas, so they may absorb rainfall more quickly. This leads to less flooding. Dry soils can also become harder. In this case heavy rainfall runs off into rivers and lakes. This increases risks of flooding. [15] :1155

Climate change affects many factors associated with droughts. These include how much rain falls and how fast the rain evaporates again. Warming over land increases the severity and frequency of droughts around much of the world. [16] [15] :1057 In some tropical and subtropical regions of the world, there will probably be less rain due to global warming. This will make them more prone to drought. Droughts are set to worsen in many regions of the world. These include Central America, the Amazon and south-western South America. They also include West and Southern Africa. The Mediterranean and south-western Australia are also some of these regions. [15] :1157

Higher temperatures increase evaporation. This dries the soil and increases plant stress. Agriculture suffers as a result. This means even regions where overall rainfall is expected to remain relatively stable will experience these impacts. [15] :1157 These regions include central and northern Europe. Without climate change mitigation, around one third of land areas are likely to experience moderate or more severe drought by 2100. [15] :1157 Due to global warming droughts are more frequent and intense than in the past. [17]

Several impacts make their impacts worse. These are increased water demand, population growth and urban expansion in many areas. [18] Land restoration can help reduce the impact of droughts. One example of this is agroforestry. [19]

Impact on people

Economic impacts

Climate change also affects the gross domestic product (GDP) of the country by reducing between 0.5% and 2.5% each year (estimate for 2010). [20]

In the Awash basin in central Ethiopia floods and droughts are common. Agriculture in the basin is mainly rainfed (without irrigation systems). This applies to around 98% of total cropland as of 2012. So changes in rainfall patterns due to climate change will reduce economic activities in the basin. [5] Rainfall shocks have a direct impact on agriculture. A rainfall decrease in the Awash basin could lead to a 5% decline in the basin's overall GDP. The agricultural GDP could even drop by as much as 10%. [5]

Related Research Articles

<span class="mw-page-title-main">Drought</span> Period with less precipitation than normal

A drought is a period of drier-than-normal conditions. A drought can last for days, months or years. Drought often has large impacts on the ecosystems and agriculture of affected regions, and causes harm to the local economy. Annual dry seasons in the tropics significantly increase the chances of a drought developing, with subsequent increased wildfire risks. Heat waves can significantly worsen drought conditions by increasing evapotranspiration. This dries out forests and other vegetation, and increases the amount of fuel for wildfires.

<span class="mw-page-title-main">Effects of climate change</span>

Effects of climate change are well documented and growing for Earth's natural environment and human societies. Changes to the climate system include an overall warming trend, changes to precipitation patterns, and more extreme weather. As the climate changes it impacts the natural environment with effects such as more intense forest fires, thawing permafrost, and desertification. These changes impact ecosystems and societies, and can become irreversible once tipping points are crossed.

<span class="mw-page-title-main">Environmental issues in Africa</span>

African environmental issues are caused by human impacts on the natural environment and affect humans and nearly all forms of life. Issues include deforestation, soil degradation, air pollution, water pollution, garbage pollution, climate change and water scarcity. These issues result in environmental conflict and are connected to broader social struggles for democracy and sovereignty.

<span class="mw-page-title-main">Climate change in Australia</span> Impacts of climate change on Australia and responses

Climate change has been a critical issue in Australia since the beginning of the 21st century. Australia is becoming hotter and more prone to extreme heat, bushfires, droughts, floods, and longer fire seasons because of climate change. Climate issues include wildfires, heatwaves, cyclones, rising sea levels, and erosion.

<span class="mw-page-title-main">Climate change in California</span>

Climate change in California has resulted in higher than average temperatures, leading to increased occurrences of drought and wildfires. During the next few decades in California, climate change is likely to further reduce water availability, increase wildfire risk, decrease agricultural productivity, and threaten coastal ecosystems. The state will also be impacted economically due to the rising cost of providing water to its residents along with revenue and job loss in the agricultural sector. California has taken a number of steps to mitigate impacts of climate change in the state.

<span class="mw-page-title-main">Water security</span> A goal of water management to harness water-related opportunities and manage risks

The aim of water security is to make the most of water's benefits for humans and ecosystems. The second aim is to limit the risks of destructive impacts of water to an acceptable level. These risks include for example too much water (flood), too little water or poor quality (polluted) water. People who live with a high level of water security always have access to "an acceptable quantity and quality of water for health, livelihoods and production". For example, access to water, sanitation and hygiene services is one part of water security. Some organizations use the term water security more narrowly for water supply aspects only.

<span class="mw-page-title-main">Climate change in Africa</span> Emissions, impacts and responses of the African continent related to climate change

Climate change in Africa is an increasingly serious threat as Africa is among the most vulnerable continents to the effects of climate change. Some sources even classify Africa as "the most vulnerable continent on Earth". Climate change and climate variability will likely reduce agricultural production, food security and water security. As a result, there will be negative consequences on people's lives and sustainable development in Africa.

<span class="mw-page-title-main">Effects of climate change on agriculture</span> Effects of climate change on agriculture

There are numerous effects of climate change on agriculture, many of which are making it harder for agricultural activities to provide global food security. Rising temperatures and changing weather patterns often result in lower crop yields due to water scarcity caused by drought, heat waves and flooding. These effects of climate change can also increase the risk of several regions suffering simultaneous crop failures. Currently this risk is regarded as rare but if these simultaneous crop failures did happen they would have significant consequences for the global food supply. Many pests and plant diseases are also expected to either become more prevalent or to spread to new regions. The world's livestock are also expected to be affected by many of the same issues, from greater heat stress to animal feed shortfalls and the spread of parasites and vector-borne diseases.

<span class="mw-page-title-main">Climate change in the Philippines</span> Impact of climate change on the Philippines

Climate change is having serious impacts in the Philippines such as increased frequency and severity of natural disasters, sea level rise, extreme rainfall, resource shortages, and environmental degradation. All of these impacts together have greatly affected the Philippines' agriculture, water, infrastructure, human health, and coastal ecosystems and they are projected to continue having devastating damages to the economy and society of the Philippines.

<span class="mw-page-title-main">Climate change in Ghana</span> Emissions, impacts, and responses of Ghana related to climate change

Climate change in Ghana is impacting the people in Ghana in several ways as the country sits at the intersection of three hydro-climatic zones. Changes in rainfall, weather conditions and sea-level rise will affect the salinity of coastal waters. This is expected to negatively affect both farming and fisheries.

<span class="mw-page-title-main">Climate change in Tanzania</span> Emissions, impacts and responses of Tanzania related to climate change

Climate change in Tanzania is affecting the natural environment and residents of Tanzania. Temperatures in Tanzania are rising with a higher likelihood of intense rainfall events and of dry spells.

<span class="mw-page-title-main">Climate change in Kenya</span> Emissions, impacts and responses of Kenya related to climate change

Climate change is posing an increasing threat to global socio-economic development and environmental sustainability. Developing countries with low adaptive capacity and high vulnerability to the phenomenon are disproportionately affected. Climate change in Kenya is increasingly impacting the lives of Kenya's citizens and the environment. Climate Change has led to more frequent extreme weather events like droughts which last longer than usual, irregular and unpredictable rainfall, flooding and increasing temperatures.

<span class="mw-page-title-main">Climate change in Italy</span> Impact of climate change in Italy

In Italy, widespread impacts of climate change are currently being felt. With an increase in extreme events such as heatwaves, droughts and more frequent flooding, Italy faces many challenges adapting to climate change.

<span class="mw-page-title-main">Climate change in Iran</span> Emissions, impacts and responses in Iran related to climate change

Iran is among the most vulnerable countries to climate change in the Middle East and North Africa (MENA). Iran contributes to about 1.8% of global greenhouse gas emissions (GHG), and is ranked 8th in greenhouse gas emissions (GHG) world wide and is ranked first in the MENA region due to its reliance on oil and natural gas. Climate change has led to reduced precipitation as well as increased temperatures, with Iran holding the hottest temperature recorded in Asia.

Climate change and agriculture are complexly related processes. In the United States, agriculture is the second largest emitter of greenhouse gases (GHG), behind the energy sector. Direct GHG emissions from the agricultural sector account for 8.4% of total U.S. emissions, but the loss of soil organic carbon through soil erosion indirectly contributes to emissions as well. While agriculture plays a role in propelling climate change, it is also affected by the direct and secondary consequences of climate change. USDA research indicates that these climatic changes will lead to a decline in yield and nutrient density in key crops, as well as decreased livestock productivity. Climate change poses unprecedented challenges to U.S. agriculture due to the sensitivity of agricultural productivity and costs to changing climate conditions. Rural communities dependent on agriculture are particularly vulnerable to climate change threats.

<span class="mw-page-title-main">Climate change in the Middle East and North Africa</span> Emissions, impacts and responses of the MENA region related to climate change

Climate change in the Middle East and North Africa (MENA) refers to changes in the climate of the MENA region and the subsequent response, adaption and mitigation strategies of countries in the region. In 2018, the MENA region emitted 3.2 billion tonnes of carbon dioxide and produced 8.7% of global greenhouse gas emissions (GHG) despite making up only 6% of the global population. These emissions are mostly from the energy sector, an integral component of many Middle Eastern and North African economies due to the extensive oil and natural gas reserves that are found within the region. The region of Middle East is one of the most vulnerable to climate change. The impacts include increase in drought conditions, aridity, heatwaves and sea level rise.

<span class="mw-page-title-main">Climate change in South Africa</span> Emissions, impacts and responses of South Africa related to climate change

Climate change in South Africa is leading to increased temperatures and rainfall variability. Evidence shows that extreme weather events are becoming more prominent due to climate change. This is a critical concern for South Africans as climate change will affect the overall status and wellbeing of the country, for example with regards to water resources. Just like many other parts of the world, climate research showed that the real challenge in South Africa was more related to environmental issues rather than developmental ones. The most severe effect will be targeting the water supply, which has huge effects on the agriculture sector. Speedy environmental changes are resulting in clear effects on the community and environmental level in different ways and aspects, starting with air quality, to temperature and weather patterns, reaching out to food security and disease burden.

<span class="mw-page-title-main">Effects of climate change on the water cycle</span> Water movements which carry energy added to Earths climate system

The effects of climate change on the water cycle are profound and have been described as an intensification or a strengthening of the water cycle. This effect has been observed since at least 1980. One example is when heavy rain events become even stronger. The effects of climate change on the water cycle have important negative effects on the availability of freshwater resources, as well as other water reservoirs such as oceans, ice sheets, the atmosphere and soil moisture. The water cycle is essential to life on Earth and plays a large role in the global climate system and ocean circulation. The warming of our planet is expected to be accompanied by changes in the water cycle for various reasons. For example, a warmer atmosphere can contain more water vapor which has effects on evaporation and rainfall.

<span class="mw-page-title-main">Climate change in Israel</span>

Israel, like many other countries in the Middle East and North Africa, experience adverse effects from climate change. Annual and mean temperatures are increasing in Israel, with mean temperature expected to increase between 1.6 and 1.8 °C by 2100. There is a reduction in annual precipitation and delayed winter rains. Israel is already experiencing droughts and water shortages. Heatwaves are other natural hazards expected to increase with climate change.

<span class="mw-page-title-main">Climate change in Malawi</span>

Malawi is a land-locked country in southeastern Africa situated along the southernmost arm of the East African Rift-Valley System between latitudes 9°22’ and 17°03’ south of the equator, and longitudes 33°40’ and 35°55’ east of the Greenwich meridian. It shares borders with Tanzania in the north and northeast, Mozambique in the southwest, south, and east, and Zambia in the west. Malawi is highly vulnerable to the effects of climate change as the vast majority of Malawians rely on small-scale, rain-fed agriculture, making them highly dependent on weather patterns. Climate change increasingly exacerbates droughts, flooding, and inconsistent rainfall—contributing to food insecurity and threatening to derail progress toward Malawi’s goal of self-reliance.

References

  1. Hausfather, Zeke; Peters, Glen (29 January 2020). "Emissions – the 'business as usual' story is misleading". Nature. 577 (7792): 618–20. Bibcode:2020Natur.577..618H. doi: 10.1038/d41586-020-00177-3 . PMID   31996825.
  2. Schuur, Edward A.G.; Abbott, Benjamin W.; Commane, Roisin; Ernakovich, Jessica; Euskirchen, Eugenie; Hugelius, Gustaf; Grosse, Guido; Jones, Miriam; Koven, Charlie; Leshyk, Victor; Lawrence, David; Loranty, Michael M.; Mauritz, Marguerite; Olefeldt, David; Natali, Susan; Rodenhizer, Heidi; Salmon, Verity; Schädel, Christina; Strauss, Jens; Treat, Claire; Turetsky, Merritt (2022). "Permafrost and Climate Change: Carbon Cycle Feedbacks From the Warming Arctic". Annual Review of Environment and Resources. 47: 343–371. doi: 10.1146/annurev-environ-012220-011847 . Medium-range estimates of Arctic carbon emissions could result from moderate climate emission mitigation policies that keep global warming below 3°C (e.g., RCP4.5). This global warming level most closely matches country emissions reduction pledges made for the Paris Climate Agreement...
  3. Phiddian, Ellen (5 April 2022). "Explainer: IPCC Scenarios". Cosmos . Archived from the original on 20 September 2023. Retrieved 30 September 2023. "The IPCC doesn't make projections about which of these scenarios is more likely, but other researchers and modellers can. The Australian Academy of Science, for instance, released a report last year stating that our current emissions trajectory had us headed for a 3°C warmer world, roughly in line with the middle scenario. Climate Action Tracker predicts 2.5 to 2.9°C of warming based on current policies and action, with pledges and government agreements taking this to 2.1°C.
  4. 1 2 3 4 Simane, B.; Beyene, H.; Deressa, W.; Kumie, A.; Berhane, K.; Samet, J. (23 June 2022). "Review of Climate Change and Health in Ethiopia". The Ethiopian Journal of Health Development = Ya'ityopya Tena Lemat Mashet. 30 (1 Spec Iss): 28–41. PMC   5578710 . PMID   28867919.
  5. 1 2 3 4 Borgomeo, Edoardo; Vadheim, Bryan; Woldeyes, Firew B.; Alamirew, Tena; Tamru, Seneshaw; Charles, Katrina J.; Kebede, Seifu; Walker, Oliver (2018). "The Distributional and Multi-Sectoral Impacts of Rainfall Shocks: Evidence From Computable General Equilibrium Modelling for the Awash Basin, Ethiopia". Ecological Economics. 146: 621–632. doi: 10.1016/j.ecolecon.2017.11.038 . CC-BY icon.svg Text was copied from this source, which is available under a Creative Commons Attribution 4.0 International License
  6. Conway D, Schipper ELF. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Global Environmental Change. Vol. 21. 2011. pp. 227–37.
  7. Climate-Resilient Green Economy (CRGE); CRGE. Green economy strategy of Ethiopia, editor. Ethiopia's Climate-Resilient Green Economy Addis Ababa, Ethiopia. Federal Democratic Republic of Ethiopia (PDF). 2011. p. 188.
  8. World Bank. A Country Study on the Economic Impacts of Climate Change, Environment and Natural Resource Management, Sustainable Development Department, Africa Region, Development Prospects Group. 2008 Report No. 46946-ET (PDF).
  9. "CHIRPS: Rainfall Estimates from Rain Gauge and Satellite Observations | Climate Hazards Center - UC Santa Barbara". www.chc.ucsb.edu. Retrieved 2022-09-14.
  10. Taye, Meron Teferi; Dyer, Ellen; Charles, Katrina J.; Hirons, Linda C. (2021). "Potential predictability of the Ethiopian summer rains: Understanding local variations and their implications for water management decisions". Science of the Total Environment. 755 (Pt 1): 142604. Bibcode:2021ScTEn.755n2604T. doi: 10.1016/j.scitotenv.2020.142604 . PMID   33092844. S2CID   225052023.
  11. 1 2 3 Abebe, Dawit (2010). "Future climate of Ethiopia from PRECIS Regional Climate Model Experimental Design" (PDF). Met Office UK. Retrieved 21 August 2022.
  12. Dyer, Ellen; Washington, Richard; Teferi Taye, Meron (May 2020). "Evaluating the CMIP5 ensemble in Ethiopia: Creating a reduced ensemble for rainfall and temperature in Northwest Ethiopia and the Awash basin". International Journal of Climatology. 40 (6): 2964–2985. Bibcode:2020IJCli..40.2964D. doi: 10.1002/joc.6377 . S2CID   210622749.
  13. 1 2 "Ethiopia: Drought Update No. 4, June 2022 - Ethiopia | ReliefWeb". reliefweb.int. 3 June 2022. Retrieved 2022-07-06.
  14. "Ethiopia: 28 People Killed in Floods in Remote Regions". VOA. 5 April 2016. Retrieved 14 June 2016.
  15. 1 2 3 4 5 6 7 Douville, H., K. Raghavan, J. Renwick, R.P. Allan, P.A. Arias, M. Barlow, R. Cerezo-Mota, A. Cherchi, T.Y. Gan, J. Gergis, D. Jiang, A. Khan, W. Pokam Mba, D. Rosenfeld, J. Tierney, and O. Zolina, 2021: Chapter 8: Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, US, pp. 1055–1210, doi:10.1017/9781009157896.010
  16. Cook, Benjamin I.; Mankin, Justin S.; Anchukaitis, Kevin J. (2018-05-12). "Climate Change and Drought: From Past to Future". Current Climate Change Reports. 4 (2): 164–179. Bibcode:2018CCCR....4..164C. doi:10.1007/s40641-018-0093-2. ISSN   2198-6061. S2CID   53624756.
  17. "Scientists confirm global floods and droughts worsened by climate change". PBS NewsHour. 2023-03-13. Retrieved 2023-05-01.
  18. Mishra, A. K.; Singh, V. P. (2011). "Drought modeling – A review". Journal of Hydrology. 403 (1–2): 157–175. Bibcode:2011JHyd..403..157M. doi:10.1016/j.jhydrol.2011.03.049.
  19. Daniel Tsegai, Miriam Medel, Patrick Augenstein, Zhuojing Huang (2022) Drought in Numbers 2022 - restoration for readiness and resilience, United Nations Convention to Combat Desertification (UNCCD)
  20. Bank, World (January 2010). World Bank. License: CC BY 30 Unported. Washington DC: 2010. Economics of Adaptation to Climate Change, Ethiopia.