Confined placental mosaicism

Last updated

Confined placental mosaicism

Confined placental mosaicism (CPM) represents a discrepancy between the chromosomal makeup of the cells in the placenta and the cells in the fetus. CPM was first described by Kalousek and Dill in 1983. [1] CPM is diagnosed when some trisomic cells are detected on chorionic villus sampling and only normal cells are found on a subsequent prenatal test, such as amniocentesis or fetal blood sampling. In theory, CPM is when the trisomic cells are found only in the placenta. CPM is detected in approximately 1-2% of ongoing pregnancies that are studied by chorionic villus sampling (CVS) at 10 to 12 weeks of pregnancy. Chorionic villus sampling is a prenatal procedure which involves a placental biopsy. Most commonly when CPM is found it represents a trisomic cell line in the placenta and a normal diploid chromosome complement in the baby. [2] However, the fetus is involved in about 10% of cases. [3]

Contents

Pathogenesis

CPM occurs in one of two ways:

Several factors influence the pattern of normal and abnormal cells in the developing embryo. Reduced or improved replication rates of the trisomic cells could affect the number of abnormal cells compared to the number of normal cells. The abnormal cells may fail to differentiate or function properly and could be lost. It is also possible that there is no selection against the abnormal cells, but their presence could compromise the pregnancy on a whole. [4]

Types

There are three types of confined placental mosaicism depending on the cells involved at the time of the error:

Prognosis

Most pregnancies that are diagnosed with confined placental mosaicism continue to term with no complications and the children develop normally.

However, some pregnancies with CPM experience prenatal or perinatal complications. The pregnancy loss rate in pregnancies with confined placental mosaicism, diagnosed by chorionic villus sampling, is higher than among pregnancies without placental mosaicism. It may be that sometimes the presence of significant numbers of abnormal cells in the placenta interferes with proper placental function. An impaired placenta cannot support the pregnancy and this may lead to the loss of a chromosomally normal baby. [5] On the other hand, an apparently normal diploid fetus may experience problems with growth or development due to the effects of uniparental disomy (UPD). Intrauterine growth restriction (IUGR) has been reported in a number of CPM cases. In follow-up studies adequate postnatal catch-up growth has been demonstrated, which may suggest a placental cause of the IUGR. [6]

When predicting the likely effects (if any) of CPM detected in the first trimester, several potentially interactive factors may be playing a role, including:

Related Research Articles

<span class="mw-page-title-main">Amniocentesis</span> Sampling of amniotic fluid done mainly to detect fetal chromosomal abnormalities

Amniocentesis is a medical procedure used primarily in the prenatal diagnosis of genetic conditions. It has other uses such as in the assessment of infection and fetal lung maturity. Prenatal diagnostic testing, which includes amniocentesis, is necessary to conclusively diagnose the majority of genetic disorders, with amniocentesis being the gold-standard procedure after 15 weeks' gestation.

<span class="mw-page-title-main">Aneuploidy</span> Presence of an abnormal number of chromosomes in a cell

Aneuploidy is the presence of an abnormal number of chromosomes in a cell, for example a human cell having 45 or 47 chromosomes instead of the usual 46. It does not include a difference of one or more complete sets of chromosomes. A cell with any number of complete chromosome sets is called a euploid cell.

<span class="mw-page-title-main">Uniparental disomy</span> Medical condition

Uniparental disomy (UPD) occurs when a person receives two copies of a chromosome, or of part of a chromosome, from one parent and no copy from the other. UPD can be the result of heterodisomy, in which a pair of non-identical chromosomes are inherited from one parent or isodisomy, in which a single chromosome from one parent is duplicated. Uniparental disomy may have clinical relevance for several reasons. For example, either isodisomy or heterodisomy can disrupt parent-specific genomic imprinting, resulting in imprinting disorders. Additionally, isodisomy leads to large blocks of homozygosity, which may lead to the uncovering of recessive genes, a similar phenomenon seen in inbred children of consanguineous partners.

<span class="mw-page-title-main">Nondisjunction</span> Failure to separate properly during cell division

Nondisjunction is the failure of homologous chromosomes or sister chromatids to separate properly during cell division (mitosis/meiosis). There are three forms of nondisjunction: failure of a pair of homologous chromosomes to separate in meiosis I, failure of sister chromatids to separate during meiosis II, and failure of sister chromatids to separate during mitosis. Nondisjunction results in daughter cells with abnormal chromosome numbers (aneuploidy).

<span class="mw-page-title-main">Prenatal testing</span> Testing for diseases or conditions in a fetus

Prenatal testing is a tool that can be used to detect some birth defects at various stages prior to birth. Prenatal testing consists of prenatal screening and prenatal diagnosis, which are aspects of prenatal care that focus on detecting problems with the pregnancy as early as possible. These may be anatomic and physiologic problems with the health of the zygote, embryo, or fetus, either before gestation even starts or as early in gestation as practicable. Screening can detect problems such as neural tube defects, chromosome abnormalities, and gene mutations that would lead to genetic disorders and birth defects, such as spina bifida, cleft palate, Down syndrome, trisomy 18, Tay–Sachs disease, sickle cell anemia, thalassemia, cystic fibrosis, muscular dystrophy, and fragile X syndrome. Some tests are designed to discover problems which primarily affect the health of the mother, such as PAPP-A to detect pre-eclampsia or glucose tolerance tests to diagnose gestational diabetes. Screening can also detect anatomical defects such as hydrocephalus, anencephaly, heart defects, and amniotic band syndrome.

<span class="mw-page-title-main">Chorionic villus sampling</span> Type of prenatal diagnosis done to determine chromosomal or genetic disorders in the fetus

Chorionic villus sampling (CVS), sometimes called "chorionic villous sampling", is a form of prenatal diagnosis done to determine chromosomal or genetic disorders in the fetus. It entails sampling of the chorionic villus and testing it for chromosomal abnormalities, usually with FISH or PCR. CVS usually takes place at 10–12 weeks' gestation, earlier than amniocentesis or percutaneous umbilical cord blood sampling. It is the preferred technique before 15 weeks.

The triple test, also called triple screen, the Kettering test or the Bart's test, is an investigation performed during pregnancy in the second trimester to classify a patient as either high-risk or low-risk for chromosomal abnormalities.

Full trisomy 9 is a rare and fatal chromosomal disorder caused by having three copies (trisomy) of chromosome number 9. It can be a viable condition if trisomy affects only part of the cells of the body (mosaicism) or in cases of partial trisomy in which cells have a normal set of two entire chromosomes 9 plus part of a third copy, usually of the short arm of the chromosome.

The Pallister–Killian syndrome (PKS), also termed tetrasomy 12p mosaicism or the Pallister mosaic aneuploidy syndrome, is an extremely rare and severe genetic disorder. PKS is due to the presence of an extra and abnormal chromosome termed a small supernumerary marker chromosome (sSMC). sSMCs contain copies of genetic material from parts of virtually any other chromosome and, depending on the genetic material they carry, can cause various genetic disorders and neoplasms. The sSMC in PKS consists of multiple copies of the short arm of chromosome 12. Consequently, the multiple copies of the genetic material in the sSMC plus the two copies of this genetic material in the two normal chromosome 12's are overexpressed and thereby cause the syndrome. Due to a form of genetic mosaicism, however, individuals with PKS differ in the tissue distributions of their sSMC and therefore show different syndrome-related birth defects and disease severities. For example, individuals with the sSMC in their heart tissue are likely to have cardiac structural abnormalities while those without this sSMC localization have a structurally normal heart.

<span class="mw-page-title-main">Nuchal scan</span> Routine ultrasound done between 11 and 14 weeks pregnancy

A nuchal scan or nuchal translucency (NT) scan/procedure is a sonographic prenatal screening scan (ultrasound) to detect chromosomal abnormalities in a fetus, though altered extracellular matrix composition and limited lymphatic drainage can also be detected.

The genetics and abortion issue is an extension of the abortion debate and the disability rights movement. Since the advent of forms of prenatal diagnosis, such as amniocentesis and ultrasound, it has become possible to detect the presence of congenital disorders in the fetus before birth. Specifically, disability-selective abortion is the abortion of fetuses that are found to have non-fatal mental or physical defects detected through prenatal testing. Many prenatal tests are now considered routine, such as testing for Down syndrome. Women who are discovered to be carrying fetuses with disabilities are often faced with the decision of whether to abort or to prepare to parent a child with disabilities.

Trisomic rescue is a genetic phenomenon in which a fertilized ovum containing three copies of a chromosome loses one of these chromosomes to form a diploid chromosome complement. If both of the retained chromosomes come from the same parent, then uniparental disomy results. If the retained chromosomes come from different parents then there are no phenotypic or genotypic anomalies. The mechanism of trisomic rescue has been well confirmed in vivo, and alternative mechanisms that occur in trisomies are rare in comparison.

<span class="mw-page-title-main">Percutaneous umbilical cord blood sampling</span>

Percutaneous umbilical cord blood sampling (PUBS), also called cordocentesis, fetal blood sampling, or umbilical vein sampling is a diagnostic genetic test that examines blood from the fetal umbilical cord to detect fetal abnormalities. Fetal and maternal blood supply are typically connected in utero with one vein and two arteries to the fetus. The umbilical vein is responsible for delivering oxygen rich blood to the fetus from the mother; the umbilical arteries are responsible for removing oxygen poor blood from the fetus. This allows for the fetus’ tissues to properly perfuse. PUBS provides a means of rapid chromosome analysis and is useful when information cannot be obtained through amniocentesis, chorionic villus sampling, or ultrasound ; this test carries a significant risk of complication and is typically reserved for pregnancies determined to be at high risk for genetic defect. It has been used with mothers with immune thrombocytopenic purpura.

<span class="mw-page-title-main">Trisomy 16</span> Partial or complete triplication of chromosome 16

Trisomy 16 is a chromosomal abnormality in which there are 3 copies of chromosome 16 rather than two. It is the most common trisomy leading to miscarriage and the second most common chromosomal cause of it, closely following X-chromosome monosomy. About 6% of miscarriages have trisomy 16. Those mostly occur between 8 and 15 weeks after the last menstrual period.

Ravinder (Rav) Dhallan is the chairman and chief executive officer of Ravgen.

Cell-free fetal DNA (cffDNA) is fetal DNA that circulates freely in the maternal blood. Maternal blood is sampled by venipuncture. Analysis of cffDNA is a method of non-invasive prenatal diagnosis frequently ordered for pregnant women of advanced maternal age. Two hours after delivery, cffDNA is no longer detectable in maternal blood.

A termination for medical reasons (TFMR) is an induced abortion motivated by medical indications involving the fetus or mother. In most countries, health risks are the only basis for obtaining a legal abortion. Prenatal screening can allow early diagnosis, and abortion if desired or necessary. Some medical organizations advocate the offer of diagnostic testing by chorionic villi sampling, and amniocentesis to all pregnant women, as a matter of course.

Rh factor testing, also known as Rhesus factor testing, is the procedure of determining the rhesus D status of an individual.

<span class="mw-page-title-main">Trisomy X</span> Chromosome disorder in women

Trisomy X, also known as triple X syndrome and characterized by the karyotype 47,XXX, is a chromosome disorder in which a female has an extra copy of the X chromosome. It is relatively common and occurs in 1 in 1,000 females, but is rarely diagnosed; fewer than 10% of those with the condition know they have it.

Noninvasive prenatal testing (NIPT) is a method used to determine the risk for the fetus being born with certain chromosomal abnormalities, such as trisomy 21, trisomy 18 and trisomy 13. This testing analyzes small DNA fragments that circulate in the blood of a pregnant woman. Unlike most DNA found in the nucleus of a cell, these fragments are not found within the cells, instead they are free-floating, and so are called cell free fetal DNA (cffDNA). These fragments usually contain less than 200 DNA building blocks and arise when cells die, and their contents, including DNA, are released into the bloodstream. cffDNA derives from placental cells and is usually identical to fetal DNA. Analysis of cffDNA from placenta provides the opportunity for early detection of certain chromosomal abnormalities without harming the fetus.

References

  1. Kalousek DK, Dill FJ (August 1983). "Chromosomal mosaicism confined to the placenta in human conceptions". Science. 221 (4611): 665–7. Bibcode:1983Sci...221..665K. doi:10.1126/science.6867735. PMID   6867735.
  2. 1 2 3 Robinson WP, Barrett IJ, Bernard L, et al. (April 1997). "Meiotic origin of trisomy in confined placental mosaicism is correlated with presence of fetal uniparental disomy, high levels of trisomy in trophoblast, and increased risk of fetal intrauterine growth restriction". American Journal of Human Genetics. 60 (4): 917–27. PMC   1712477 . PMID   9106539.
  3. 1 2 3 4 5 Phillips OP, Tharapel AT, Lerner JL, Park VM, Wachtel SS, Shulman LP (March 1996). "Risk of fetal mosaicism when placental mosaicism is diagnosed by chorionic villus sampling". American Journal of Obstetrics and Gynecology. 174 (3): 850–5. doi:10.1016/S0002-9378(96)70312-5. PMID   8633655.
  4. Wolstenholme, J. (1996). "Confined placental mosaicism for trisomies 2, 3, 7, 8, 9, 16, and 22: Their incidence, likely origins, and mechanisms for cell lineage compartmentalization". Prenatal Diagnosis. 16 (6): 511–524. doi:10.1002/(SICI)1097-0223(199606)16:6<511::AID-PD904>3.0.CO;2-8. PMID   8809892. S2CID   38466382.
  5. Tyson RW, Kalousek DK (1992). "Chromosomal abnormalities in stillbirth and neonatal death". In Dimmick JE, Kalousek DK (eds.). Developmental pathology of the embryo and fetus. Philadelphia: Lippincott. pp. 103–109. ISBN   978-0-397-51040-5. OCLC   23868557.
  6. Fryburg JS, Dimaio MS, Yang-Feng TL, Mahoney MJ (June 1993). "Follow-up of pregnancies complicated by placental mosaicism diagnosed by chorionic villus sampling". Prenatal Diagnosis. 13 (6): 481–94. doi:10.1002/pd.1970130610. PMID   8372074. S2CID   25038944.
  7. 1 2 Wolstenholme J, Rooney DE, Davison EV (May 1994). "Confined placental mosaicism, IUGR, and adverse pregnancy outcome: a controlled retrospective U.K. collaborative survey". Prenatal Diagnosis. 14 (5): 345–61. doi:10.1002/pd.1970140505. PMID   8084856. S2CID   38299841.
  8. Benn, Peter A.; Lillian Y. F. Hsu (2004). "Prenatal Diagnosis of Chromosomal Abnormalities through Amniocentesis". In Aubrey Milunsky (ed.). Genetic Disorders and the Fetus: Diagnosis, Prevention and Treatment. Baltimore: Johns Hopkins University Press. pp. 214–296. ISBN   978-0-8018-7928-9. OCLC   52887000.
  9. Farra C, Giudicelli B, Pellissier MC, Philip N, Piquet C (March 2000). "Fetoplacental chromosomal discrepancy". Prenatal Diagnosis. 20 (3): 190–3. doi:10.1002/(SICI)1097-0223(200003)20:3<190::AID-PD777>3.0.CO;2-A. PMID   10719319. S2CID   25878593.
  10. Goldberg JD, Wohlferd MM (June 1997). "Incidence and outcome of chromosomal mosaicism found at the time of chorionic villus sampling". American Journal of Obstetrics and Gynecology. 176 (6): 1349–52, discussion 1352–3. doi:10.1016/S0002-9378(97)70356-9. PMID   9215195.

Further reading