Euphylliidae

Last updated

Euphylliidae
London Zoo 1110162.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Cnidaria
Class: Hexacorallia
Order: Scleractinia
Family: Euphylliidae
(Milne Edwards & Haime, 1857)
Genera
Multiple - see text.

Euphylliidae (Greek eu-, true; Greek phyllon, leaf) are known as a family of polyped stony corals under the order Scleractinia. [1]

Contents

This family consists of multiple genera (more than one genus) and various species which are found among the ocean floor. These coral may be sparse or conspicuous in the wild. However, they are commonly kept in home-aquariums to be enjoyed for their beauty and protection by many fish and their owners.

Classification

As of the year 2000, the order Scleractinia was divided into 18 artificial families, known as the Acroporidae, Astrocoeniidae, Pocilloporidae, Euphyllidae, Oculinidae, Meandrinidae, Siderastreidae, Agariciidae, Fungiidae, Rhizangiidae, Pectiniidae, Merulinidae, Dendrophylliidae, Caryophylliidae, Mussidae, Faviidae, Trachyphylliidae, and Poritidae (sensu Veron 2000). During this time, only 11 families were known to contain corals that can be classified as truly reef-building. All scleractinian families considered here are zooxanthellates (contain photo-endo-symbiontic zooxanthellae). However, in 2022 there are more than 30 families determined under the Scleractinia (according to the World Register of Marine Species) order and 845 species of coral which are known to be reef-building. [2] [3]

Various genera are listed by the World Register of Marine Species: [4]

Additionally, Acrhelia and Acrohelia are considered synonyms of Galaxea, while Leptosmilia is considered a synonym of Euphyllia.

Appearance

Euphyllidae typically remain consistent in appearance with most stony corals. They are long, tubular or cylindrical with many "branches" which extend up toward the surface of the ocean. The exoskeleton of this organism is made of many polyps which consist of limestone or calcium carbonate.

"Corallum with phaceloid growth; are green, gray, bluish, or pale-brown in color. Tentacles with, greenish to cream tips, that are round, kidney to bean-shaped (according to the species). Polyps usually at least partly extended. Corallites are very tall (up to 150 mm) and either single or in rows; rise separately (even at their bases) from encrusting leaves and are usually 1-40 mm in diameter. Calices are rounded. Septa are numerous and in cycles, larger ones exsert by as much as 10 mm as they pass over the corallite wall. Septal margins are smooth, finely granulated or minutely dentate. There is no columella." [5]

These corals have a body plan characterized by radial symmetry, which allows all parts of their bodies to be equally receptive and responsive to predator and prey. [6]

Structure

Euphylliidae inherits its body structure and size through Scleractinia: [7]

Colonies are phaceloid, meandroid or flabello-meandroid, with large, solid and widely spaced septo-costae which have little or no ornamentation. [8] Corallite (cuplike calcareous skeleton of polyp) walls have a similar structure. The most conspicuous of this family are the genera Plerogyra and Euphyllia. They can be abundant in turbid lagoonal habitats. Euphyllidae are commonly referred to as the "bubble" or "grape" corals, since the large fleshy tentacles and vesicles are expanded during the day give the corals a bubble-like appearance. [5] [9]

While most hard corals are best identified by looking at details of their skeleton, members of the family Euphyllidae are more easily told apart by looking at the structure of their tentacles.

Some species have tentacles with a distinctive U-shaped tip, others lack this. [10]

Most coral structures are actually made up of hundreds to thousands of tiny coral creatures called polyps. Each soft-bodied polyp—most no thicker than a nickel—secretes a hard outer skeleton of limestone (calcium carbonate) that attaches either to rock or the dead skeletons of other polyps.

In the case of stony or hard corals, these polyp conglomerates grow, die, and endlessly repeat the cycle over time, slowly laying the limestone foundation for coral reefs and giving shape to the familiar corals that reside there. Because of this cycle of growth, death, and regeneration among individual polyps, many coral colonies can live for a very long time. [11]

Environment and activity

Euphylliid corals are benthic and sessile organisms, remaining on the sea floor through all stages of life. Although these organisms are commonly found in shallow waters and are often assumed to be plants, they are indeed marine animals. They do not have photosynthetic capabilities, which is why it is clear that polyps are very successful in feeding.

These animals have a single opening that serves as both the mouth and the anus. Tentacles with stinging structures, called nematocysts, usually surround this opening. These stinging cells, triggered by touch or chemical stimulus, can contain toxins or can be sticky. [6]

These coral do not significantly propel themselves and therefore will not move actively with the exception of outward growth. As Euphyllia are part of the coral taxonomy, they naturally feed through the small stingers of polyps which catch floating zooplankton among other small organisms. Therefore they are photosymbiotic and known as suspension feeders. [12]

"Polyp activity in passive suspension feeders has been considered to be affected by several environmental factors such as hydrodynamics, water temperature and food concentration." [13]

The current conservation status of the family overall is unthreatened, but specific species are of higher concern than most others. Reasons for this concern rely on environmental issues such as increased sea surface temperature, ocean acidification, and overfishing for the marine aquarium trade.

Most corals contain algae called zooxanthellae , which are plant-like organisms. Residing within the coral's tissues, the microscopic algae are well protected and make use of the coral's metabolic waste products for photosynthesis. [11]

Location

Various Euphyllidae were found among the Indo-Pacific, Australia, Southeast Asia, the Ryukyu Islands and East China Sea, the Solomon Islands, Fiji, and Palau. Many species prefer fringing reef crests, mid-slope terraces, and lagoons at depths of about 2 to 25 meters.[ citation needed ]

Reproduction

"Corals can reproduce asexually and sexually. In asexual reproduction, new clonal polyps bud off from parent polyps to expand or begin new colonies. This occurs when the parent polyp reaches a certain size and divides. This process continues throughout the animal's life.

About three-quarters of all stony corals produce male and/or female gametes. Most of these species are broadcast spawners, releasing massive numbers of eggs and sperm into the water to distribute their offspring over a broad geographic area. The eggs and sperm join to form free-floating, or planktonic, larvae called planulae. Large numbers of planulae are produced to compensate for the many hazards, such as predators, that they encounter as they are carried by water currents. The time between planulae formation and settlement is a period of exceptionally high mortality among corals." [14]

"Planulae swim upward toward the light (exhibiting positive phototaxis), entering the surface waters and being transported by the current. After floating at the surface, the planulae swim back down to the bottom, where, if conditions are favorable, they will settle. Once the planulae settle, they metamorphose into polyps and form colonies that increase in size. In most species, the larvae settle within two days, although some will swim for up to three weeks, and in one known instance, two months." [14]

Related Research Articles

<span class="mw-page-title-main">Polyp (zoology)</span> One of two forms found in the phylum Cnidaria (zoology)

A polyp in zoology is one of two forms found in the phylum Cnidaria, the other being the medusa. Polyps are roughly cylindrical in shape and elongated at the axis of the vase-shaped body. In solitary polyps, the aboral end is attached to the substrate by means of a disc-like holdfast called a pedal disc, while in colonies of polyps it is connected to other polyps, either directly or indirectly. The oral end contains the mouth, and is surrounded by a circlet of tentacles.

<span class="mw-page-title-main">Anthozoa</span> Class of cnidarians without a medusa stage

Anthozoa is a class of marine invertebrates which includes the sea anemones, stony corals and soft corals. Adult anthozoans are almost all attached to the seabed, while their larvae can disperse as part of the plankton. The basic unit of the adult is the polyp; this consists of a cylindrical column topped by a disc with a central mouth surrounded by tentacles. Sea anemones are mostly solitary, but the majority of corals are colonial, being formed by the budding of new polyps from an original, founding individual. Colonies are strengthened by calcium carbonate and other materials and take various massive, plate-like, bushy or leafy forms.

<span class="mw-page-title-main">Scleractinia</span> Order of Hexacorallia which produce a massive stony skeleton

Scleractinia, also called stony corals or hard corals, are marine animals in the phylum Cnidaria that build themselves a hard skeleton. The individual animals are known as polyps and have a cylindrical body crowned by an oral disc in which a mouth is fringed with tentacles. Although some species are solitary, most are colonial. The founding polyp settles and starts to secrete calcium carbonate to protect its soft body. Solitary corals can be as much as 25 cm (10 in) across but in colonial species the polyps are usually only a few millimetres in diameter. These polyps reproduce asexually by budding, but remain attached to each other, forming a multi-polyp colony of clones with a common skeleton, which may be up to several metres in diameter or height according to species.

<span class="mw-page-title-main">Mussidae</span> Family of corals

Mussidae is a family of stony coral in the order Scleractinia. Following a taxonomic revision in 2012, the family is now restricted to species found in the Atlantic Ocean, with Pacific species transferred to the new family Lobophylliidae. Many species are referred to as brain coral because their generally spheroid form and grooved surface resembles the convolutions of a brain.

<i>Euphyllia divisa</i> Species of coral

Euphyllia divisa, commonly known as frogspawn coral and sometimes misspelled Euphyllia divisia, is a large-polyped stony coral native to the Indo-Pacific islands. It is a commonly kept species in the marine aquarium hobby. The related coral Fimbriaphyllia paradivisa is frequently misidentified as frogspawn leading to some confusion. Fimbriaphyllia divisa has a corallite skeleton with a flabello-meandroid "wall" structure whereas Fimbriaphyllia paradivisa has a tree-like branching structure with separate corallites.

<span class="mw-page-title-main">Pocilloporidae</span> Family of corals

The Pocilloporidae are a family of stony corals in the order Scleractinia occurring in the Pacific and Indian Oceans.

<i>Euphyllia</i> Genus of corals

Euphyllia is a genus of large-polyped stony coral. Several species are commonly found in marine aquariums. The genus includes the following species:

<i>Galaxea</i> Genus of corals

Galaxea is a genus of colonial stony corals in the family Euphylliidae. Common names include crystal, galaxy, starburst and tooth coral. They are abundant on reefs in the Indo-Pacific region and the Red Sea. They are found in water less than 20 metres (66 ft) deep and favour turbid sites. They are sometimes kept in reef aquaria.

<i>Galaxea fascicularis</i> Species of coral

Galaxea fascicularis is a species of colonial stony coral in the family Euphylliidae, commonly known as octopus coral, fluorescence grass coral, galaxy coral among various vernacular names.

<i>Mussa angulosa</i> Species of coral

Mussa is a genus of stony coral in the family Faviidae. It is monotypic, being represented by the single species Mussa angulosa, commonly known as the spiny or large flower coral. It is found on reefs in shallow waters in the Caribbean Sea, the Bahamas and the Gulf of Mexico.

<i>Euphyllia ancora</i> Species of coral

Euphyllia ancora is a species of hard coral in the family Euphylliidae. It is known by several common names, including anchor coral and hammer coral, or less frequently as sausage coral, ridge coral, or bubble honeycomb coral.

<i>Euphyllia cristata</i> Species of coral

Euphyllia cristata is commonly called grape coral. E. cristata is a kind of stony or hard coral in the family Euphylliidae; it also belongs to the genus Euphyllia in the order of Scleractinia. E. cristata has a wide range of distribution throughout the tropical waters of the Indo-West Pacific area with a large presence in Indonesia. However, despite this large range of distribution, E. cristata has a slightly lower abundance compared to other species, making them a little more uncommon to find. They are typically found in shallow waters from 1–35 meters deep.

<i>Catalaphyllia</i> Genus of corals

Catalaphyllia is a monotypic genus of stony coral in the family Euphylliidae from the western Pacific Ocean. It is represented by a single species, Catalaphyllia jardinei, commonly known as elegance coral. It was first described by William Saville-Kent in 1893 as Pectinia jardinei.

<i>Dipsastraea speciosa</i> Species of coral

Dipsastraea speciosa is a species of colonial stony coral in the family Merulinidae. It is found in tropical waters of the Indian and Pacific oceans.

<i>Goniastrea favulus</i> Species of coral

Goniastrea favulus, also known as the lesser star coral, is a species of stony coral in the family Merulinidae. It occurs in shallow water in the Indo-Pacific region. This is an uncommon species of coral and the International Union for Conservation of Nature has rated its conservation status as being "near threatened".

Euphyllia paradivisa, or branching frogspawn coral, is a species of large-polyped stony coral belonging to the Euphylliidae family. It shares the common name of "frogspawn coral" with Euphyllia divisa, but is differentiated as the "branching" frogspawn whereas Euphyllia divisa has a "wall" structure. It is a commonly kept species in the marine aquarium hobby.

<i>Isophyllia</i> Genus of corals

Isophyllia is a genus of stony coral in the subfamily Mussinae of the family Mussidae.

<i>Pocillopora capitata</i> Species of coral

Pocillopora capitata, commonly known as the cauliflower coral, is a principal hermatypic coral found in the Eastern Tropical Pacific. P. capitata is a colonial species of stony coral of the class Anthozoa, the order Scleractinia, and the family Pocilloporidae. This species was first documented and described by Addison Emery Verrill in 1864. P. capitata is threatened by many of the effects of climate change, including — but not limited to — increased temperatures that cause bleaching and hypoxic conditions.

References

  1. Alloiteau, James (1952). Embranchement des Coelentérés. Paris: Traité de Paléontologie. pp. 1–10.
  2. Carpenter, Kent E.; Abrar, Muhammad; Aeby, Greta; Aronson, Richard B.; Banks, Stuart; Bruckner, Andrew; Chiriboga, Angel; Cortés, Jorge; Delbeek, J. Charles; DeVantier, Lyndon; Edgar, Graham J.; Edwards, Alasdair J.; Fenner, Douglas; Guzmán, Héctor M.; Hoeksema, Bert W.; Hodgson, Gregor; Johan, Ofri; Licuanan, Wilfredo Y.; Livingstone, Suzanne R.; Lovell, Edward R.; Moore, Jennifer A.; Obura, David O.; Ochavillo, Domingo; Polidoro, Beth A.; Precht, William F.; Quibilan, Miledel C.; Reboton, Clarissa; Richards, Zoe T.; Rogers, Alex D.; Sanciangco, Jonnell; Sheppard, Anne; Sheppard, Charles; Smith, Jennifer; Stuart, Simon; Turak, Emre; Veron, John E. N.; Wallace, Carden; Weil, Ernesto; Wood, Elizabeth (25 July 2008). "One-Third of Reef-Building Corals Face Elevated Extinction Risk from Climate Change and Local Impacts". Science. 321 (5888): 560–563. Bibcode:2008Sci...321..560C. doi:10.1126/science.1159196. PMID   18653892. S2CID   206513451.
  3. Wagner, Daniel; Friedlander, Alan M.; Pyle, Richard L.; Brooks, Cassandra M.; Gjerde, Kristina M.; Wilhelm, T. ‘Aulani (14 September 2020). "Coral Reefs of the High Seas: Hidden Biodiversity Hotspots in Need of Protection". Frontiers in Marine Science. 7: 567428. doi: 10.3389/fmars.2020.567428 .
  4. Hoeksema, B. W.; Cairns, S. (2024). World List of Scleractinia. Euphylliidae Milne Edwards & Haime, 1857. Accessed through: World Register of Marine Species at: on 2024-02-04
  5. 1 2 "Scleractinian Coral Family, Euphyllidae".
  6. 1 2 "Corals and sea anemones (Anthozoa)". 11 December 2018.
  7. "Euphylliidae Milne Edwards & Haime, 1857". WoRMS - World Register of Marine Species. Retrieved 23 October 2023.
  8. Colonies
  9. Luzon, Katrina S.; Lin, Mei-Fang; Ablan Lagman, Ma. Carmen A.; Licuanan, Wilfredo Roehl Y.; Chen, Chaolun Allen (4 December 2017). "Resurrecting a subgenus to genus: molecular phylogeny of Euphyllia and Fimbriaphyllia (order Scleractinia; family Euphyllidae; clade V)". PeerJ. 5: e4074. doi: 10.7717/peerj.4074 . PMC   5719963 . PMID   29226032.
  10. "Euphyllid corals (Euphyllidae) on the Shores of Singapore".
  11. 1 2 "Are corals animals or plants?".
  12. Euphyllidae
  13. Rossi, Sergio; Rizzo, Lucia; Duchêne, Jean-Claude (9 July 2019). "Polyp expansion of passive suspension feeders: a red coral case study". PeerJ. 7: e7076. doi: 10.7717/peerj.7076 . PMC   6625502 . PMID   31328027.
  14. 1 2 "How do Corals Reproduce - Corals: NOAA's National Ocean Service Education".

Further reading