Glucose-1,6-bisphosphate synthase

Last updated
Glucose-1,6-bisphosphate synthase
Identifiers
EC no. 2.7.1.106
CAS no. 56214-39-2
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

Glucose-1,6-bisphosphate synthase is a type of enzyme called a phosphotransferase and is involved in mammalian starch and sucrose metabolism (KEGG, 2.7.1.106 Archived 2011-07-16 at the Wayback Machine ). It catalyzes the transfer of a phosphate group from 1,3-bisphosphoglycerate to glucose-1-phosphate, yielding 3-phosphoglycerate and glucose-1,6-bisphosphate. [1]

Contents

(image courtesy of the BRENDA enzyme database)

The enzyme requires a divalent metal ion cofactor. Zinc (Zn2+), Magnesium (Mg2+), Manganese (Mn2+), Calcium (Ca2+), Nickel (Ni2+), Copper (Cu2+), Cadmium (Cd2+) are all proven effective cofactors in vitro. Additionally, the enzyme appears to function optimally in a pH range from 7.3–8.7 and at a temperature of 25 °C. [1]

Metabolic significance of the catalyzed reaction

The main product, glucose-1,6-bisphosphate, appears to have several functions:

1. Inhibition of hexokinase, an enzyme used in the first step of glycolysis. [2]

2. Activation of phosphofructokinase-1 (PFK-1) and pyruvate kinase, both of which are enzymes involved in activation of the glycolytic pathway. [2] [3]

3. It acts as a coenzyme for phosphoglucomutase in glycolysis and gluconeogenesis. [4]

4. It acts as a cofactor for phosphopentomutase, which produces D-ribose-5-phosphate. [5] 5. acts as a phosphate donor molecule for unknown nonmetabolic effector proteins. [4]

6. It increases in concentration during skeletal muscle contraction. [6]

7. Its dephosphorylation yields glucose-6-phosphate, which is an important precursor molecule in glycolysis and the pentose phosphate pathway.

Glucose-1,6-bisphosphate is most likely used in correlation with gluconeolysis. The product’s inhibition of hexokinase and activation of PFK-1 and pyruvate kinase is indicative of its role in glycolysis. Glucose-1,6-bisphosphate inhibit hexokinase stopping the production glucose-6-phosphate from D-glucose. Its activation of PFK-1 and pyruvate kinase shows that glycolysis still continues without the production of glucose-6-phosphate from D-glucose. This means that the glucose-6-phosphate needed for glycolysis most likely comes from gluconeolysis.

The reactant glucose-1-phosphate is produced by gluconeolysis. [7] This reactant can also form D-glucose-6-phosphate, [8] which is needed for glycolysis. It can therefore be inferred that it is possible when glucose-1-phosphate is produced, it makes glucose-1,6-bisphosphate (with glucose-1,6-bisophosphate synthase) and glucose-6-phosphate. The glucose-1,6-bisphosphate increase the activity of glycolysis, of which glucose-6-phosphate is a reagent.

In addition, one of the reactants (1,3-bisphosphoglycerate) and one of the products (3-phosphoglycerate) are intermediates in the 'payoff' phase of glycolysis. In other words, two molecules involved with glucose-1,6-bisphosphate synthase are able to be both created and recycled in the glycolytic pathway.

The reactant glucose 1-phosphate is an important precursor molecule in many different pathways, including glycolysis, gluconeogenesis and the pentose phosphate pathway.

Regulation of the enzyme

Glucose-1,6-bisphosphate synthase is allosterically inhibited by inorganic phosphate, fructose-1,6-bisphosphate, 3-phosphoglycerate (a product), citrate, lithium, phosphoenolpyruvate (PEP), and acetyl CoA. [1] [9]

The inhibition of the enzyme by fructose-1,6-bisphosphate is most likely a feedback inhibition due to the product of the enzyme (glucose-1,6-bisphosphate) activation of PFK-1 (the enzyme which produces fructose-1,6-bisphosphate). When too much fructose-1,6-bisphosphate is produced, it inhibited the production of more PFK-1 activator.

The enzyme is also inhibited by PEP, which is a reagent of pyruvate kinase. The product of glucose-1,6-bisphosphate synthase (glucose-1,6-bisphosphate) activates pyruvate kinase.

Glucose-1,6-bisphosphate synthase appears to be activated by the presence of one of its substrates: 1,3-bisphosphoglycerate (glycerate-1,3-bisphosphate). [6]

Enzyme structure

No structure determination of glucose-1,6-bisphosphate synthase has been documented to date. Nevertheless, studies have shown that its structure appears to be markedly similar to a related enzyme called phosphoglucomutase. Both enzymes contain serine linked phosphates in their active sites, both have the same molecular weights, and both require a metal ion cofactor. Perhaps most importantly, both enzymes produce glucose-1,6-bisphosphate as either a product or an intermediate. [9]

KEGG: starch and sucrose metabolism with glucose-1,6-bisphosphate synthase (EC# 2.7.1.106)
http://www.genome.jp/dbget-bin/show_pathway?map00500+2.7.1.106

BRENDA enzyme database link for glucose-1,6-bisphosphate synthase (EC# 2.7.1.106)
http://www.brenda.uni-koeln.de/php/result_flat.php4?ecno=2.7.1.106 Archived 2011-07-16 at the Wayback Machine

Structure of phosphoglucomutase in the protein data bank
http://www.rcsb.org/pdb/explore.do?structureId=1LXT

Related Research Articles

<span class="mw-page-title-main">Glycolysis</span> Series of interconnected biochemical reactions

Glycolysis is the metabolic pathway that converts glucose into pyruvate and, in most organisms, occurs in the liquid part of cells. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Kinase</span> Enzyme catalyzing transfer of phosphate groups onto specific substrates

In biochemistry, a kinase is an enzyme that catalyzes the transfer of phosphate groups from high-energy, phosphate-donating molecules to specific substrates. This process is known as phosphorylation, where the high-energy ATP molecule donates a phosphate group to the substrate molecule. As a result, kinase produces a phosphorylated substrate and ADP. Conversely, it is referred to as dephosphorylation when the phosphorylated substrate donates a phosphate group and ADP gains a phosphate group. These two processes, phosphorylation and dephosphorylation, occur four times during glycolysis.

<span class="mw-page-title-main">Phosphorylation</span> Chemical process of introducing a phosphate

In biochemistry, phosphorylation is the attachment of a phosphate group to a molecule or an ion. This process and its inverse, dephosphorylation, are common in biology. Protein phosphorylation often activates many enzymes.

Gluconeogenesis (GNG) is a metabolic pathway that results in the biosynthesis of glucose from certain non-carbohydrate carbon substrates. It is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis occurs mainly in the liver and, to a lesser extent, in the cortex of the kidneys. It is one of two primary mechanisms – the other being degradation of glycogen (glycogenolysis) – used by humans and many other animals to maintain blood sugar levels, avoiding low levels (hypoglycemia). In ruminants, because dietary carbohydrates tend to be metabolized by rumen organisms, gluconeogenesis occurs regardless of fasting, low-carbohydrate diets, exercise, etc. In many other animals, the process occurs during periods of fasting, starvation, low-carbohydrate diets, or intense exercise.

<span class="mw-page-title-main">Tumor hypoxia</span> Situation where tumor cells have been deprived of oxygen

Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic microenvironments in solid tumors are a result of available oxygen being consumed within 70 to 150 μm of tumor vasculature by rapidly proliferating tumor cells thus limiting the amount of oxygen available to diffuse further into the tumor tissue. In order to support continuous growth and proliferation in challenging hypoxic environments, cancer cells are found to alter their metabolism. Furthermore, hypoxia is known to change cell behavior and is associated with extracellular matrix remodeling and increased migratory and metastatic behavior.

<span class="mw-page-title-main">Phosphofructokinase 1</span> Class of enzymes

Phosphofructokinase-1 (PFK-1) is one of the most important regulatory enzymes of glycolysis. It is an allosteric enzyme made of 4 subunits and controlled by many activators and inhibitors. PFK-1 catalyzes the important "committed" step of glycolysis, the conversion of fructose 6-phosphate and ATP to fructose 1,6-bisphosphate and ADP. Glycolysis is the foundation for respiration, both anaerobic and aerobic. Because phosphofructokinase (PFK) catalyzes the ATP-dependent phosphorylation to convert fructose-6-phosphate into fructose 1,6-bisphosphate and ADP, it is one of the key regulatory steps of glycolysis. PFK is able to regulate glycolysis through allosteric inhibition, and in this way, the cell can increase or decrease the rate of glycolysis in response to the cell's energy requirements. For example, a high ratio of ATP to ADP will inhibit PFK and glycolysis. The key difference between the regulation of PFK in eukaryotes and prokaryotes is that in eukaryotes PFK is activated by fructose 2,6-bisphosphate. The purpose of fructose 2,6-bisphosphate is to supersede ATP inhibition, thus allowing eukaryotes to have greater sensitivity to regulation by hormones like glucagon and insulin.

<span class="mw-page-title-main">Pyruvate kinase</span> Class of enzymes

Pyruvate kinase is the enzyme involved in the last step of glycolysis. It catalyzes the transfer of a phosphate group from phosphoenolpyruvate (PEP) to adenosine diphosphate (ADP), yielding one molecule of pyruvate and one molecule of ATP. Pyruvate kinase was inappropriately named before it was recognized that it did not directly catalyze phosphorylation of pyruvate, which does not occur under physiological conditions. Pyruvate kinase is present in four distinct, tissue-specific isozymes in animals, each consisting of particular kinetic properties necessary to accommodate the variations in metabolic requirements of diverse tissues.

<span class="mw-page-title-main">Phosphoglucomutase</span> Metabolic enzyme

Phosphoglucomutase is an enzyme that transfers a phosphate group on an α-D-glucose monomer from the 1 to the 6 position in the forward direction or the 6 to the 1 position in the reverse direction.

<span class="mw-page-title-main">Glucose 6-phosphate</span> Chemical compound

Glucose 6-phosphate is a glucose sugar phosphorylated at the hydroxy group on carbon 6. This dianion is very common in cells as the majority of glucose entering a cell will become phosphorylated in this way.

<span class="mw-page-title-main">Entner–Doudoroff pathway</span> Series of interconnected biochemical reactions

The Entner–Doudoroff pathway is a metabolic pathway that is most notable in Gram-negative bacteria, certain Gram-positive bacteria and archaea. Glucose is the substrate in the ED pathway and through a series of enzyme assisted chemical reactions it is catabolized into pyruvate. Entner and Doudoroff (1952) and MacGee and Doudoroff (1954) first reported the ED pathway in the bacterium Pseudomonas saccharophila. While originally thought to be just an alternative to glycolysis (EMP) and the pentose phosphate pathway (PPP), some studies now suggest that the original role of the EMP may have originally been about anabolism and repurposed over time to catabolism, meaning the ED pathway may be the older pathway. Recent studies have also shown the prevalence of the ED pathway may be more widespread than first predicted with evidence supporting the presence of the pathway in cyanobacteria, ferns, algae, mosses, and plants. Specifically, there is direct evidence that Hordeum vulgare uses the Entner–Doudoroff pathway.

<span class="mw-page-title-main">Glyceraldehyde 3-phosphate</span> Chemical compound

Glyceraldehyde 3-phosphate, also known as triose phosphate or 3-phosphoglyceraldehyde and abbreviated as G3P, GA3P, GADP, GAP, TP, GALP or PGAL, is a metabolite that occurs as an intermediate in several central pathways of all organisms. With the chemical formula H(O)CCH(OH)CH2OPO32-, this anion is a monophosphate ester of glyceraldehyde.

Dihydroxyacetone phosphate (DHAP, also glycerone phosphate in older texts) is the anion with the formula HOCH2C(O)CH2OPO32-. This anion is involved in many metabolic pathways, including the Calvin cycle in plants and glycolysis. It is the phosphate ester of dihydroxyacetone.

<span class="mw-page-title-main">Phosphofructokinase 2</span> Class of enzymes

Phosphofructokinase-2 (6-phosphofructo-2-kinase, PFK-2) or fructose bisphosphatase-2 (FBPase-2), is an enzyme indirectly responsible for regulating the rates of glycolysis and gluconeogenesis in cells. It catalyzes formation and degradation of a significant allosteric regulator, fructose-2,6-bisphosphate (Fru-2,6-P2) from substrate fructose-6-phosphate. Fru-2,6-P2 contributes to the rate-determining step of glycolysis as it activates enzyme phosphofructokinase 1 in the glycolysis pathway, and inhibits fructose-1,6-bisphosphatase 1 in gluconeogenesis. Since Fru-2,6-P2 differentially regulates glycolysis and gluconeogenesis, it can act as a key signal to switch between the opposing pathways. Because PFK-2 produces Fru-2,6-P2 in response to hormonal signaling, metabolism can be more sensitively and efficiently controlled to align with the organism's glycolytic needs. This enzyme participates in fructose and mannose metabolism. The enzyme is important in the regulation of hepatic carbohydrate metabolism and is found in greatest quantities in the liver, kidney and heart. In mammals, several genes often encode different isoforms, each of which differs in its tissue distribution and enzymatic activity. The family described here bears a resemblance to the ATP-driven phospho-fructokinases; however, they share little sequence similarity, although a few residues seem key to their interaction with fructose 6-phosphate.

<span class="mw-page-title-main">3-Phosphoglyceric acid</span> Chemical compound

3-Phosphoglyceric acid (3PG, 3-PGA, or PGA) is the conjugate acid of 3-phosphoglycerate or glycerate 3-phosphate (GP or G3P). This glycerate is a biochemically significant metabolic intermediate in both glycolysis and the Calvin-Benson cycle. The anion is often termed as PGA when referring to the Calvin-Benson cycle. In the Calvin-Benson cycle, 3-phosphoglycerate is typically the product of the spontaneous scission of an unstable 6-carbon intermediate formed upon CO2 fixation. Thus, two equivalents of 3-phosphoglycerate are produced for each molecule of CO2 that is fixed. In glycolysis, 3-phosphoglycerate is an intermediate following the dephosphorylation (reduction) of 1,3-bisphosphoglycerate.

<span class="mw-page-title-main">Fructose 1,6-bisphosphate</span> Chemical compound

Fructose 1,6-bisphosphate, known in older publications as Harden-Young ester, is fructose sugar phosphorylated on carbons 1 and 6. The β-D-form of this compound is common in cells. Upon entering the cell, most glucose and fructose is converted to fructose 1,6-bisphosphate.

A futile cycle, also known as a substrate cycle, occurs when two metabolic pathways run simultaneously in opposite directions and have no overall effect other than to dissipate energy in the form of heat. The reason this cycle was called "futile" cycle was because it appeared that this cycle operated with no net utility for the organism. As such, it was thought of being a quirk of the metabolism and thus named a futile cycle. After further investigation it was seen that futile cycles are very important for regulating the concentrations of metabolites. For example, if glycolysis and gluconeogenesis were to be active at the same time, glucose would be converted to pyruvate by glycolysis and then converted back to glucose by gluconeogenesis, with an overall consumption of ATP. Futile cycles may have a role in metabolic regulation, where a futile cycle would be a system oscillating between two states and very sensitive to small changes in the activity of any of the enzymes involved. The cycle does generate heat, and may be used to maintain thermal homeostasis, for example in the brown adipose tissue of young mammals, or to generate heat rapidly, for example in insect flight muscles and in hibernating animals during periodical arousal from torpor. It has been reported that the glucose metabolism substrate cycle is not a futile cycle but a regulatory process. For example, when energy is suddenly needed, ATP is replaced by AMP, a much more reactive adenine.

<span class="mw-page-title-main">Fructose 2,6-bisphosphate</span> Chemical compound

Fructose 2,6-bisphosphate, abbreviated Fru-2,6-P2, is a metabolite that allosterically affects the activity of the enzymes phosphofructokinase 1 (PFK-1) and fructose 1,6-bisphosphatase (FBPase-1) to regulate glycolysis and gluconeogenesis. Fru-2,6-P2 itself is synthesized and broken down in either direction by the integrated bifunctional enzyme phosphofructokinase 2 (PFK-2/FBPase-2), which also contains a phosphatase domain and is also known as fructose-2,6-bisphosphatase. Whether the kinase and phosphatase domains of PFK-2/FBPase-2 are active or inactive depends on the phosphorylation state of the enzyme.

<span class="mw-page-title-main">Fructose-bisphosphate aldolase</span>

Fructose-bisphosphate aldolase, often just aldolase, is an enzyme catalyzing a reversible reaction that splits the aldol, fructose 1,6-bisphosphate, into the triose phosphates dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P). Aldolase can also produce DHAP from other (3S,4R)-ketose 1-phosphates such as fructose 1-phosphate and sedoheptulose 1,7-bisphosphate. Gluconeogenesis and the Calvin cycle, which are anabolic pathways, use the reverse reaction. Glycolysis, a catabolic pathway, uses the forward reaction. Aldolase is divided into two classes by mechanism.

<span class="mw-page-title-main">Inborn errors of carbohydrate metabolism</span> Medical condition

Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.

<span class="mw-page-title-main">TP53-inducible glycolysis and apoptosis regulator</span> Protein-coding gene in the species Homo sapiens

The TP53-inducible glycolysis and apoptosis regulator (TIGAR) also known as fructose-2,6-bisphosphatase TIGAR is an enzyme that in humans is encoded by the C12orf5 gene.

References

  1. 1 2 3 Rose IA, Warms JV, Kaklij G (May 1975). "A specific enzyme for glucose 1,6-bisphosphate synthesis". J. Biol. Chem. 250 (9): 3466–70. PMID   235548.
  2. 1 2 Piatti E, Accorsi A, Piacentini MP, Fazi A (February 1992). "Glucose 1,6-bisphosphate-overloaded erythrocytes: a strategy to investigate the metabolic role of the bisphosphate in red blood cells". Arch. Biochem. Biophys. 293 (1): 117–21. doi:10.1016/0003-9861(92)90373-5. PMID   1309980.
  3. Bassols AM, Carreras J, Cussó R (December 1986). "Changes in glucose 1,6-bisphosphate content in rat skeletal muscle during contraction". Biochem. J. 240 (3): 747–51. doi:10.1042/bj2400747. PMC   1147482 . PMID   3827864.
  4. 1 2 Yip V, Pusateri ME, Carter J, Rose IA, Lowry OH (February 1988). "Distribution of the glucose-1,6-bisphosphate system in brain and retina". J. Neurochem. 50 (2): 594–602. doi:10.1111/j.1471-4159.1988.tb02952.x. PMID   2826701.
  5. Kammen HO, Koo R (September 1969). "Phosphopentomutases. I. Identification of two activities in rabbit tissues". J. Biol. Chem. 244 (18): 4888–93. PMID   5824563.
  6. 1 2 Lee AD, Katz A (March 1989). "Transient increase in glucose 1,6-bisphosphate in human skeletal muscle during isometric contraction". Biochem. J. 258 (3): 915–8. doi:10.1042/bj2580915. PMC   1138452 . PMID   2730576.
  7. Cowgill RW (December 1959). "Lobster muscle phosphorylase: purification and properties". J. Biol. Chem. 234: 3146–53. PMID   13812491.
  8. Joshi JG, Handler P (September 1964). "PHOSPHOGLUCOMUTASE. I. PURIFICATION AND PROPERTIES OF PHOSPHOGLUCOMUTASE FROM ESCHERICHIA COLI". J. Biol. Chem. 239: 2741–51. PMID   14216423.
  9. 1 2 Rose IA, Warms JV, Wong LJ (June 1977). "Inhibitors of glucose-1,6-bisphosphate synthase". J. Biol. Chem. 252 (12): 4262–8. PMID   558982.