Heliobacteria

Last updated

Heliobacteria
Scientific classification Red Pencil Icon.png
Domain: Bacteria
Phylum: Bacillota
Class: Clostridia
Order: Eubacteriales
Family: Heliobacteriaceae
Madigan & Asao 2010
Genera [1]

Heliobacteria are a unique subset of prokaryotic bacteria that process light for energy. Distinguishable from other phototrophic bacteria, they utilize a unique photosynthetic pigment, bacteriochlorophyll g and are the only known Gram-positive phototroph. [2] They are a key player in symbiotic nitrogen fixation alongside plants, and share a reaction center with green-sulfur bacteria. [3] [4]

Contents

RNA trees place the heliobacteria among the Bacillota. [5] They have no outer membrane and like certain other Bacillota (Clostridia), they form heat-resistant endospores, which contain high levels of calcium and dipicolinic acid. Heliobacteria are the only Bacillota known to be phototrophic.

Metabolism

The heliobacteria are phototrophic: they convert light energy into chemical energy using a type I reaction center. [6] [7] The primary pigment involved is bacteriochlorophyll g, which is unique to the group and has a unique absorption spectrum; this gives the heliobacteria their own environmental niche. [5] Phototrophic processes take place at the cell membrane, which does not form folds or compartments as it does in purple bacteria. Though heliobacteria are phototrophic, they can create energy without light using pyruvate fermentation, which generates significantly less energy than it could with light. [8]

Heliobacteria are photoheterotrophic, requiring organic carbon sources, and they are exclusively anaerobic. [5] Bacteriochlorophyll g is inactivated by the presence of oxygen, making them obligate anaerobes (they cannot survive in aerobic conditions). Heliobacteria have been found in soils, [9] hot springs, [10] soda lakes [11] [12] and are common in the waterlogged soils of paddy fields. [9] They are avid nitrogen fixers, so are probably important in the fertility of paddy fields. [9] Heliobacteria are mainly terrestrial phototrophs, contrary to the multitudes of others that are aquatic, and often form mutualistic relationships with the plants near them. [13]

Taxonomy

Heliobacteria should not be confused with Helicobacter , which is a genus of bacteria with quite different characteristics.

The currently accepted taxonomy is based on the List of Prokaryotic names with Standing in Nomenclature (LPSN) [14] and National Center for Biotechnology Information (NCBI) [15]

16S rRNA based LTP_01_2022 [16] [17] [18] and 120 marker proteins based GTDB 07-RS207 [19] [20] [21]

Heliorestis Bryantseva et al. 2000

Heliophilum Ormerod et al. 1996

Heliobacillus Beer-Romero and Gest 1998

Heliobacterium Gest and Favinger 1985

Heliomicrobium Kyndt et al. 2021

See also

Related Research Articles

<span class="mw-page-title-main">Bacillota</span> Phylum of bacteria

The Bacillota are a phylum of bacteria, most of which have gram-positive cell wall structure. The renaming of phyla such as Firmicutes in 2021 remains controversial among microbiologists, many of whom continue to use the earlier names of long standing in the literature.

<span class="mw-page-title-main">Green sulfur bacteria</span> Family of bacteria

The green sulfur bacteria are a phylum of obligately anaerobic photoautotrophic bacteria that metabolize sulfur.

The Chloroflexia are a class of bacteria in the phylum Chloroflexota, known as filamentous green non-sulfur bacteria. They use light for energy and are named for their green pigment, usually found in photosynthetic bodies called chlorosomes.

<span class="mw-page-title-main">Bacteriochlorophyll</span> Chemical compound

Bacteriochlorophylls (BChl) are photosynthetic pigments that occur in various phototrophic bacteria. They were discovered by C. B. van Niel in 1932. They are related to chlorophylls, which are the primary pigments in plants, algae, and cyanobacteria. Organisms that contain bacteriochlorophyll conduct photosynthesis to sustain their energy requirements, but do not produce oxygen as a byproduct. They use wavelengths of light not absorbed by plants or cyanobacteria. Replacement of Mg2+ with protons gives bacteriophaeophytin (BPh), the phaeophytin form.

<span class="mw-page-title-main">Purple bacteria</span> Group of phototrophic bacteria

Purple bacteria or purple photosynthetic bacteria are Gram-negative proteobacteria that are phototrophic, capable of producing their own food via photosynthesis. They are pigmented with bacteriochlorophyll a or b, together with various carotenoids, which give them colours ranging between purple, red, brown, and orange. They may be divided into two groups – purple sulfur bacteria and purple non-sulfur bacteria (Rhodospirillaceae). Purple bacteria are anoxygenic phototrophs widely spread in nature, but especially in aquatic environments, where there are anoxic conditions that favor the synthesis of their pigments.

<span class="mw-page-title-main">Chromatiaceae</span> Family of purple sulfur bacteria

The Chromatiaceae are one of the two families of purple sulfur bacteria, together with the Ectothiorhodospiraceae. They belong to the order Chromatiales of the class Gammaproteobacteria, which is composed by unicellular Gram-negative organisms. Most of the species are photolithoautotrophs and conduct an anoxygenic photosynthesis, but there are also representatives capable of growing under dark and/or microaerobic conditions as either chemolithoautotrophs or chemoorganoheterotrophs.

<span class="mw-page-title-main">Phototroph</span> Organism using energy from light in metabolic processes

Phototrophs are organisms that carry out photon capture to produce complex organic compounds and acquire energy. They use the energy from light to carry out various cellular metabolic processes. It is a common misconception that phototrophs are obligatorily photosynthetic. Many, but not all, phototrophs often photosynthesize: they anabolically convert carbon dioxide into organic material to be utilized structurally, functionally, or as a source for later catabolic processes. All phototrophs either use electron transport chains or direct proton pumping to establish an electrochemical gradient which is utilized by ATP synthase, to provide the molecular energy currency for the cell. Phototrophs can be either autotrophs or heterotrophs. If their electron and hydrogen donors are inorganic compounds they can be also called lithotrophs, and so, some photoautotrophs are also called photolithoautotrophs. Examples of phototroph organisms are Rhodobacter capsulatus, Chromatium, and Chlorobium.

In taxonomy, the Thermoplasmatales are an order of the Thermoplasmata. All are acidophiles, growing optimally at pH below 2. Picrophilus is currently the most acidophilic of all known organisms, being capable of growing at a pH of -0.06. Many of these organisms do not contain a cell wall, although this is not true in the case of Picrophilus. Most members of the Thermotoplasmata are thermophilic.

<span class="mw-page-title-main">Chlorosome</span>

A chlorosome is a photosynthetic antenna complex found in green sulfur bacteria (GSB) and some green filamentous anoxygenic phototrophs (FAP). They differ from other antenna complexes by their large size and lack of protein matrix supporting the photosynthetic pigments. Green sulfur bacteria are a group of organisms that generally live in extremely low-light environments, such as at depths of 100 metres in the Black Sea. The ability to capture light energy and rapidly deliver it to where it needs to go is essential to these bacteria, some of which see only a few photons of light per chlorophyll per day. To achieve this, the bacteria contain chlorosome structures, which contain up to 250,000 chlorophyll molecules. Chlorosomes are ellipsoidal bodies, in GSB their length varies from 100 to 200 nm, width of 50-100 nm and height of 15 - 30 nm, in FAP the chlorosomes are somewhat smaller.

The Gemmatimonadota are a phylum of bacteria established in 2003. The phylum contains two classes Gemmatimonadetes and Longimicrobia.

In taxonomy, Methanospirillum is a genus of microbes within the family Methanospirillaceae. All its species are methanogenic archaea. The cells are bar-shaped and form filaments. Most produce energy via the reduction of carbon dioxide with hydrogen, but some species can also use formate as a substrate. They are Gram-negative and move using archaella on the sides of the cells. They are strictly anaerobic, and they are found in wetland soil and anaerobic water treatment systems.

<span class="mw-page-title-main">Antenna complex in purple bacteria</span>

The antenna complex in purple photosynthetic bacteria are protein complexes responsible for the transfer of solar energy to the photosynthetic reaction centre. Purple bacteria, particularly Rhodopseudomonos acidophilia of purple non-sulfur bacteria, have been one of the main groups of organisms used to study bacterial antenna complexes so much is known about this group's photosynthetic components. It is one of the many independent types of light-harvesting complex used by various photosynthetic organisms.

<span class="mw-page-title-main">Anoxygenic photosynthesis</span> Process used by obligate anaerobes

Bacterial anoxygenic photosynthesis differs from the better known oxygenic photosynthesis in plants by the reductant used and the byproduct generated.

Aerobic anoxygenic phototrophic bacteria (AAPBs) are Alphaproteobacteria and Gammaproteobacteria that are obligate aerobes that capture energy from light by anoxygenic photosynthesis. Anoxygenic photosynthesis is the phototrophic process where light energy is captured and stored as ATP. The production of oxygen is non-existent and, therefore, water is not used as an electron donor. They are widely distributed marine bacteria that may constitute over 10% of the open ocean microbial community. They can be particularly abundant in oligotrophic conditions where they were found to be 24% of the community. Aerobic anoxygenic phototrophic bacteria are photoheterotrophic (phototroph) microbes that exist in a variety of aquatic environments. Most are obligately aerobic, meaning they require oxygen to grow. One aspect of these bacteria is that they, unlike other similar bacteria, are unable to utilize BChl (bacteriochlorophyll) for anaerobic growth. The only photosynthetic pigment that exists in AAPB is BChl-a. Anaerobic phototrophic bacteria, on the contrary, can contain numerous species of photosynthetic pigments like bacteriochlorophyll-a. These bacteria can be isolated using carotenoid presence and medias containing organic compounds. Predation, as well as the availability of phosphorus and light, have been shown to be important factors that influence AAPB growth in their natural environments. AAPBs are thought to play an important role in carbon cycling by relying on organic matter substrates and acting as sinks for dissolved organic carbon. There is still a knowledge gap in research areas regarding the abundance and genetic diversity of AAPB, as well as the environmental variables that regulate these two properties.

Megasphaera is a genus of Bacillota bacteria classified within the class Negativicutes.

Chlorobium chlorochromatii, originally known as Chlorobium aggregatum, is a symbiotic green sulfur bacteria that performs anoxygenic photosynthesis and functions as an obligate photoautotroph using reduced sulfur species as electron donors. Chlorobium chlorochromatii can be found in stratified freshwater lakes.

Heliothrix oregonensis is a phototrophic filamentous, gliding bacterium containing bacteriochlorophyll a that is aerotolerant and photoheterotrophic.

<span class="mw-page-title-main">Okenane</span>

Okenane, the diagenetic end product of okenone, is a biomarker for Chromatiaceae, the purple sulfur bacteria. These anoxygenic phototrophs use light for energy and sulfide as their electron donor and sulfur source. Discovery of okenane in marine sediments implies a past euxinic environment, where water columns were anoxic and sulfidic. This is potentially tremendously important for reconstructing past oceanic conditions, but so far okenane has only been identified in one Paleoproterozoic rock sample from Northern Australia.

Heliorestis is an alkaliphilic genus of bacteria from the family of Heliobacteriaceae.

Photoautotrophs are organisms that use light energy and inorganic carbon to produce organic materials. Eukaryotic photoautotrophs absorb energy through the chlorophyll molecules in their chloroplasts while prokaryotic photoautotrophs use chlorophylls and bacteriochlorophylls present in their cytoplasm. All known photoautotrophs perform photosynthesis. Examples include plants, algae, and cyanobacteria.

References

  1. [Madigan M T, Martinko J M, Dunlap P V, Clark D P. (2009). Brock Biology of Microorganisms 12th edition, p. 453-454].
  2. Sattley, W. Matthew; Swingley, Wesley D. (2013-01-01). "Properties and Evolutionary Implications of the Heliobacterial Genome". Advances in Botanical Research. 66: 67–97. doi:10.1016/B978-0-12-397923-0.00003-5. ISBN   9780123979230. ISSN   0065-2296.
  3. Jagannathan, B.; Golbeck, J.H. (2013-01-01). "FX, FA, and FB Iron–Sulfur Clusters in Type I Photosynthetic Reaction Centers". Encyclopedia of Biological Chemistry. pp. 335–342. doi:10.1016/B978-0-12-378630-2.00184-5. ISBN   9780123786319.
  4. Jagannathan, B.; Golbeck, J.H. (2009-01-01). "Photosynthesis: Microbial". Encyclopedia of Microbiology. pp. 325–341. doi:10.1016/B978-012373944-5.00352-7. ISBN   9780123739445.
  5. 1 2 3 Blankenship, Robert (2014). Molecular Mechanisms of Photosynthesis. Wiley-Blackwell. p. 19. ISBN   978-1405189750.
  6. Heinickel and Golbeck 2007
  7. Gisriel, Christopher; Sarrou, Iosifina; Ferlez, Bryan; Golbeck, John H.; Redding, Kevin E.; Fromme, Raimund (2017-07-27). "Structure of a symmetric photosynthetic reaction center–photosystem". Science. 357 (6355): 1021–1025. Bibcode:2017Sci...357.1021G. doi: 10.1126/science.aan5611 . ISSN   0036-8075. PMID   28751471.
  8. "Fermentation, mitochondria and regulation | Biological Principles". bioprinciples.biosci.gatech.edu. Retrieved 2021-04-26.
  9. 1 2 3 Madigan, Michael T.; Ormerod, John G. (1995), Blankenship, Robert E.; Madigan, Michael T.; Bauer, Carl E. (eds.), "Taxonomy, Physiology and Ecology of Heliobacteria", Anoxygenic Photosynthetic Bacteria, Advances in Photosynthesis and Respiration, Springer Netherlands, pp. 17–30, doi:10.1007/0-306-47954-0_2, ISBN   9780306479540
  10. Kimble, Linda K.; Mandelco, Linda; Woese, Carl R.; Madigan, Michael T. (1995-04-01). "Heliobacterium modesticaldum, sp. nov., a thermophilic heliobacterium of hot springs and volcanic soils". Archives of Microbiology. 163 (4): 259–267. doi:10.1007/BF00393378. ISSN   1432-072X. S2CID   5551453.
  11. Asao, Marie; Jung, Deborah O.; Achenbach, Laurie A.; Madigan, Michael T. (2006-10-01). "Heliorestis convoluta sp. nov., a coiled, alkaliphilic heliobacterium from the Wadi El Natroun, Egypt". Extremophiles. 10 (5): 403–410. doi:10.1007/s00792-006-0513-4. ISSN   1433-4909. PMID   16628377. S2CID   6885589.
  12. Bryantseva, Irina A.; Gorlenko, Vladimir M.; Kompantseva, Elena I.; Achenbach, Laurie A.; Madigan, M. T. (1999-08-01). "Heliorestis daurensis, gen. nov. sp. nov., an alkaliphilic rod-to-coiled-shaped phototrophic heliobacterium from a Siberian soda lake". Archives of Microbiology. 172 (3): 167–174. doi:10.1007/s002030050756. ISSN   1432-072X. PMID   10460887. S2CID   22557416.
  13. Asao, Marie; Madigan, Michael T. (June 2010). "Taxonomy, phylogeny, and ecology of the heliobacteria". Photosynthesis Research. 104 (2–3): 103–111. doi:10.1007/s11120-009-9516-1. ISSN   1573-5079. PMID   20094790. S2CID   10052124.
  14. J.P. Euzéby. "Heliobacteriaceae". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved 2022-09-09.
  15. Sayers; et al. "Heliobacteriaceae". National Center for Biotechnology Information (NCBI) taxonomy database. Retrieved 2022-09-09.
  16. "The LTP" . Retrieved 23 February 2022.
  17. "LTP_all tree in newick format" . Retrieved 23 February 2022.
  18. "LTP_01_2022 Release Notes" (PDF). Retrieved 23 February 2022.
  19. "GTDB release 07-RS207". Genome Taxonomy Database . Retrieved 20 June 2022.
  20. "bac120_r207.sp_labels". Genome Taxonomy Database . Retrieved 20 June 2022.
  21. "Taxon History". Genome Taxonomy Database . Retrieved 20 June 2022.

Further reading