Metallurgical furnace

Last updated
Industrial furnace from 1907. Piec krepa.JPG
Industrial furnace from 1907.

A metallurgical furnace, often simply referred to as a furnace when the context is known, is an industrial furnace used to heat, melt, or otherwise process metals. Furnaces have been a central piece of equipment throughout the history of metallurgy; processing metals with heat is even its own engineering specialty known as pyrometallurgy.

Contents

One important furnace application, especially in iron and steel production, is smelting, where metal ores are reduced under high heat to separate the metal content from mineral gangue. The heat energy to fuel a furnace may be supplied directly by fuel combustion or by electricity. Different processes and the unique properties of specific metals and ores have led to many different furnace types. [1]

Air blast furnaces

The Manufacture of Iron -- Filling the Furnace, an 1873 wood engraving The Manufacture of Iron -- Filling the Furnace.jpg
The Manufacture of Iron -- Filling the Furnace, an 1873 wood engraving

Many furnace designs for smelting combine ore, fuel, and other reagents like flux in a single chamber. Mechanisms, such as bellows or motorized fans, then drive pressurized blasts of air into the chamber. These blasts make the fuel burn hotter and drive chemical reactions.

Furnaces of this type include:

Blowing in

Even smaller, pre-industrial bloomeries possess significant thermal mass. Raising a cold furnace to the necessary temperature for smelting iron requires a significant amount of energy, regardless of modern technology. For this reason, metallurgists will try their best to keep blast furnaces running continuously, and shutting down a furnace is seen as an unfortunate event.

Conversely, starting up a new furnace, or one that had been temporarily shut down, is often a special occasion. In traditional bloomeries, several rounds of fuel would need to be burnt away before the furnace was ready to accept a charge of ore. In English, this process became known as "blowing in" the furnace, while a furnace that had to be shut down and went cold had been "blown out", terms that are still applied to contemporary blast furnaces. [2]

Reverberatory furnaces

A reverberatory furnace still exposes the reaction chamber, where metal or ore is combined with reagents, to a stream of exhaust gases. However, no fuel is directly added to the chamber, and combustion occurs in a separate chamber. Furnaces of this type include:

Refining converters

In metallurgy, furnaces used to refine metals further, particularly iron into steel, are also often called converters:

Electric furnaces

Modern TLS furnace used in copper smelting during heat up. TSLFurnaceHeatup.jpg
Modern TLS furnace used in copper smelting during heat up.

Just as other industries have trended towards electrification, electric furnaces have become prevalent in metallurgy. However, while any furnace can theoretically use an electrical heating element, process specifics mostly limit this approach to furnaces with lower power demands.

Instead, electric metallurgical furnaces often apply an electric current directly to batches of metal. This is particularly useful for recycling (still relatively pure) scrap metal, or remelting ingots for casting in foundries. The absence of any fuel or exhaust gases also makes these designs versatile for heating all kinds of metals. [lower-alpha 1] Such designs include:

Other furnaces

Other metallurgical furnaces have special design features or uses. One function is heating material short of melting, in order to perform heat treatment or hot working. Basic furnaces used this way include:

Another class of furnaces isolate the material from the surrounding atmosphere and contaminants, enabling advanced heat treatments and other techniques:

Notes

  1. The absence of any additional chemistry is not always an advantage though. For example, smelting iron is still mostly done with blast furnaces, partly because the carbon monoxide created by burning coke is also excellent for chemically reducing the iron.

Related Research Articles

<span class="mw-page-title-main">Pig iron</span> Iron alloy

Pig iron, also known as crude iron, is an intermediate good used by the iron industry in the production of steel. It is developed by smelting iron ore in a blast furnace. Pig iron has a high carbon content, typically 3.8–4.7%, along with silica and other constituents of dross, which makes it brittle and not useful directly as a material except for limited applications.

<span class="mw-page-title-main">Wrought iron</span> Iron alloy with a very low carbon content

Wrought iron is an iron alloy with a very low carbon content in contrast to that of cast iron. It is a semi-fused mass of iron with fibrous slag inclusions, which give it a wood-like "grain" that is visible when it is etched, rusted, or bent to failure. Wrought iron is tough, malleable, ductile, corrosion resistant, and easily forge welded, but is more difficult to weld electrically.

<span class="mw-page-title-main">Steelmaking</span> Process for producing steel from iron ore and scrap

Steelmaking is the process of producing steel from iron ore and/or scrap. In steelmaking, impurities such as nitrogen, silicon, phosphorus, sulfur and excess carbon are removed from the sourced iron, and alloying elements such as manganese, nickel, chromium, carbon and vanadium are added to produce different grades of steel.

<span class="mw-page-title-main">Slag</span> By-product of smelting ores and used metals

Slag is a by-product of smelting (pyrometallurgical) ores and recycled metals. Slag is mainly a mixture of metal oxides and silicon dioxide. Broadly, it can be classified as ferrous, ferroalloy or non-ferrous/base metals. Within these general categories, slags can be further categorized by their precursor and processing conditions.

<span class="mw-page-title-main">Blast furnace</span> Type of furnace used for smelting to produce industrial metals

A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally pig iron, but also others such as lead or copper. Blast refers to the combustion air being supplied above atmospheric pressure.

<span class="mw-page-title-main">Industrial processes</span> Process of producing goods

Industrial processes are procedures involving chemical, physical, electrical, or mechanical steps to aid in the manufacturing of an item or items, usually carried out on a very large scale. Industrial processes are the key components of heavy industry.

<span class="mw-page-title-main">Basic oxygen steelmaking</span> Steelmaking method

Basic oxygen steelmaking, also known as Linz-Donawitz steelmaking or the oxygen converter process, is a method of primary steelmaking in which carbon-rich molten pig iron is made into steel. Blowing oxygen through molten pig iron lowers the carbon content of the alloy and changes it into low-carbon steel. The process is known as basic because fluxes of burnt lime or dolomite, which are chemical bases, are added to promote the removal of impurities and protect the lining of the converter.

<span class="mw-page-title-main">Open hearth furnace</span> A type of industrial furnace for steelmaking

An open-hearth furnace or open hearth furnace is any of several kinds of industrial furnace in which excess carbon and other impurities are burnt out of pig iron to produce steel. Because steel is difficult to manufacture owing to its high melting point, normal fuels and furnaces were insufficient for mass production of steel, and the open-hearth type of furnace was one of several technologies developed in the nineteenth century to overcome this difficulty. Compared with the Bessemer process, which it displaced, its main advantages were that it did not expose the steel to excessive nitrogen, was easier to control, and permitted the melting and refining of large amounts of scrap iron and steel.

<span class="mw-page-title-main">New Zealand Steel</span> Steel mill in Glenbrook, New Zealand

New Zealand Steel Limited is the owner of the Glenbrook Steel Mill, a steel mill located 40 kilometres south of Auckland, in Glenbrook, New Zealand. The mill was constructed in 1968 and began producing steel products in 1969. Currently, the mill produces 650,000 tonnes of steel a year, which is either used domestically or exported. Over 90% of New Zealand's steel requirements are produced at Glenbrook, while the remaining volume is produced by Pacific Steel, a steel recycling facility in Ōtāhuhu, Auckland. The mill is served by the Mission Bush Branch railway line, which was formerly a branch line to Waiuku. Coal and lime trains arrive daily. Steel products are also transported daily. The mill employs 1,150 full-time staff and 200 semi-permanent contractors.

<span class="mw-page-title-main">Electric arc furnace</span> Type of furnace

An electric arc furnace (EAF) is a furnace that heats material by means of an electric arc.

<span class="mw-page-title-main">Bloomery</span> Type of furnace once used widely for smelting iron from its oxides

A bloomery is a type of metallurgical furnace once used widely for smelting iron from its oxides. The bloomery was the earliest form of smelter capable of smelting iron. Bloomeries produce a porous mass of iron and slag called a bloom. The mix of slag and iron in the bloom, termed sponge iron, is usually consolidated and further forged into wrought iron. Blast furnaces, which produce pig iron, have largely superseded bloomeries.

<span class="mw-page-title-main">Reverberatory furnace</span> Metallurgical furnace

A reverberatory furnace is a metallurgical or process furnace that isolates the material being processed from contact with the fuel, but not from contact with combustion gases. The term reverberation is used here in a generic sense of rebounding or reflecting, not in the acoustic sense of echoing.

Pyrometallurgy is a branch of extractive metallurgy. It consists of the thermal treatment of minerals and metallurgical ores and concentrates to bring about physical and chemical transformations in the materials to enable recovery of valuable metals. Pyrometallurgical treatment may produce products able to be sold such as pure metals, or intermediate compounds or alloys, suitable as feed for further processing. Examples of elements extracted by pyrometallurgical processes include the oxides of less reactive elements like iron, copper, zinc, chromium, tin, and manganese.

Ferroalloy refers to various alloys of iron with a high proportion of one or more other elements such as manganese (Mn), aluminium (Al), or silicon (Si). They are used in the production of steels and alloys. The alloys impart distinctive qualities to steel and cast iron or serve important functions during production and are, therefore, closely associated with the iron and steel industry, the leading consumer of ferroalloys. The leading producers of ferroalloys in 2014 were China, South Africa, India, Russia and Kazakhstan, which accounted for 84% of the world production. World production of ferroalloys was estimated as 52.8 million tonnes in 2015.

<span class="mw-page-title-main">Ironworks</span> Building or site where iron is smelted

An ironworks or iron works is an industrial plant where iron is smelted and where heavy iron and steel products are made. The term is both singular and plural, i.e. the singular of ironworks is ironworks.

<span class="mw-page-title-main">Puddling (metallurgy)</span> Step in the manufacture of iron

Puddling is the process of converting pig iron to bar (wrought) iron in a coal fired reverberatory furnace. It was developed in England during the 1780s. The molten pig iron was stirred in a reverberatory furnace, in an oxidizing environment to burn the carbon, resulting in wrought iron. It was one of the most important processes for making the first appreciable volumes of valuable and useful bar iron without the use of charcoal. Eventually, the furnace would be used to make small quantities of specialty steels.

Furnace may refer to:

Zinc smelting is the process of converting zinc concentrates into pure zinc. Zinc smelting has historically been more difficult than the smelting of other metals, e.g. iron, because in contrast, zinc has a low boiling point. At temperatures typically used for smelting metals, zinc is a gas that will escape from a furnace with the flue gas and be lost, unless specific measures are taken to prevent it.

<span class="mw-page-title-main">Nikolay Dobrokhotov</span>

Nikolay Nikolayevich Dobrokhotov was a Soviet scientist and metallurgist, Honored Worker of Science and Technology of the Ukrainian SSR, Academician of the Ukrainian SSR Academy of Sciences.

Sinter plants agglomerate iron ore fines (dust) with other fine materials at high temperature, to create a product that can be used in a blast furnace. The final product, a sinter, is a small, irregular nodule of iron mixed with small amounts of other minerals. The process, called sintering, causes the constituent materials to fuse to make a single porous mass with little change in the chemical properties of the ingredients. The purpose of sinter are to be used converting iron into steel.

References

  1. D, C. H. (1923-11-24). "Metallurgical Furnaces". Nature. 112 (2821): 755–756. doi:10.1038/112755a0. ISSN   1476-4687. S2CID   28751324.
  2. Eggert, Gerald (15 January 2008). "How to "Blow In" a Newly Built or a Cold Iron Furnace". Medieval Studies. Medieval Technology and American History. One-Minute Essays. Penn State University. Archived from the original on 26 September 2023. Retrieved 18 February 2024.