N-acetylhexosamine 1-kinase

Last updated
N-acetylhexosamine 1-kinase
Identifiers
EC no. 2.7.1.162
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

N-acetylhexosamine 1-kinase (EC 2.7.1.162, NahK, LnpB, N-acetylgalactosamine/N-acetylglucosamine 1-kinase) is an enzyme with systematic name ATP:N-acetyl-D-hexosamine 1-phosphotransferase. [1] This enzyme catalyses the following chemical reaction

ATP + N-acetyl-D-hexosamine ADP + N-acetyl-alpha-D-hexosamine 1-phosphate

This enzyme is involved in the lacto-N-biose I/galacto-N-biose degradation pathway in the probiotic bacterium Bifidobacterium longum.

Related Research Articles

<span class="mw-page-title-main">Adenosine triphosphate</span> Energy-carrying molecule in living cells

Adenosine triphosphate (ATP) is an organic compound that provides energy to drive and support many processes in living cells, such as muscle contraction, nerve impulse propagation, condensate dissolution, and chemical synthesis. Found in all known forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts either to adenosine diphosphate (ADP) or to adenosine monophosphate (AMP). Other processes regenerate ATP. The human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA, and is used as a coenzyme.

<span class="mw-page-title-main">Glycolysis</span> Catabolic pathway

Glycolysis is the metabolic pathway that converts glucose into pyruvate, and in most organisms, occurs in the liquid part of cells, the cytosol. The free energy released in this process is used to form the high-energy molecules adenosine triphosphate (ATP) and reduced nicotinamide adenine dinucleotide (NADH). Glycolysis is a sequence of ten reactions catalyzed by enzymes.

<span class="mw-page-title-main">Coenzyme A</span> Coenzyme, notable for its synthesis and oxidation role

Coenzyme A (CoA, SHCoA, CoASH) is a coenzyme, notable for its role in the synthesis and oxidation of fatty acids, and the oxidation of pyruvate in the citric acid cycle. All genomes sequenced to date encode enzymes that use coenzyme A as a substrate, and around 4% of cellular enzymes use it (or a thioester) as a substrate. In humans, CoA biosynthesis requires cysteine, pantothenate (vitamin B5), and adenosine triphosphate (ATP).

In molecular biology, biosynthesis is a multi-step, enzyme-catalyzed process where substrates are converted into more complex products in living organisms. In biosynthesis, simple compounds are modified, converted into other compounds, or joined to form macromolecules. This process often consists of metabolic pathways. Some of these biosynthetic pathways are located within a single cellular organelle, while others involve enzymes that are located within multiple cellular organelles. Examples of these biosynthetic pathways include the production of lipid membrane components and nucleotides. Biosynthesis is usually synonymous with anabolism.

In biochemistry, lipogenesis is the conversion of fatty acids and glycerol into fats, or a metabolic process through which acetyl-CoA is converted to triglyceride for storage in fat. Lipogenesis encompasses both fatty acid and triglyceride synthesis, with the latter being the process by which fatty acids are esterified to glycerol before being packaged into very-low-density lipoprotein (VLDL). Fatty acids are produced in the cytoplasm of cells by repeatedly adding two-carbon units to acetyl-CoA. Triacylglycerol synthesis, on the other hand, occurs in the endoplasmic reticulum membrane of cells by bonding three fatty acid molecules to a glycerol molecule. Both processes take place mainly in liver and adipose tissue. Nevertheless, it also occurs to some extent in other tissues such as the gut and kidney. A review on lipogenesis in the brain was published in 2008 by Lopez and Vidal-Puig. After being packaged into VLDL in the liver, the resulting lipoprotein is then secreted directly into the blood for delivery to peripheral tissues.

A bifidus factor is a compound that specifically enhances the growth of bifidobacteria in either a product or in the intestines of humans and/or animals. Several products have been marketed as bifidogenic factors, such as several prebiotics and methyl-N-acetyl D-glucosamine in human milk.

<i>N</i>-Acetylmannosamine Chemical compound

N-Acetylmannosamine is a hexosamine monosaccharide. It is a neutral, stable naturally occurring compound. N-Acetylmannosamine is also known as N-Acetyl-D-mannosamine monohydrate,, N-Acetyl-D-mannosamine which can be abbreviated to ManNAc or, less commonly, NAM). ManNAc is the first committed biological precursor of N-acetylneuraminic acid. Sialic acids are the negatively charged, terminal monosaccharides of carbohydrate chains that are attached to glycoproteins and glycolipids (glycans).

Pantothenate kinase (EC 2.7.1.33, PanK; CoaA) is the first enzyme in the Coenzyme A (CoA) biosynthetic pathway. It phosphorylates pantothenate (vitamin B5) to form 4'-phosphopantothenate at the expense of a molecule of adenosine triphosphate (ATP). It is the rate-limiting step in the biosynthesis of CoA.

In enzymology, a N-acetylhexosamine 1-dehydrogenase (EC 1.1.1.240) is an enzyme that catalyzes the chemical reaction

In enzymology, a N-acylhexosamine oxidase (EC 1.1.3.29) is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">Glucosamine-phosphate N-acetyltransferase</span>

In enzymology, glucosamine-phosphate N-acetyltransferase (GNA) is an enzyme that catalyzes the transfer of an acetyl group from acetyl-CoA to the primary amine in glucosamide-6-phosphate, generating a free CoA and N-acetyl-D-glucosamine-6-phosphate.

In enzymology, a 1,3-beta-galactosyl-N-acetylhexosamine phosphorylase is an enzyme that catalyzes the chemical reaction

In enzymology, a [3-methyl-2-oxobutanoate dehydrogenase (acetyl-transferring)] is an enzyme that catalyzes the chemical reaction

In enzymology, an acetylglutamate kinase is an enzyme that catalyzes the chemical reaction:

In enzymology, a N-acetylgalactosamine kinase is an enzyme that catalyzes the chemical reaction

<span class="mw-page-title-main">N-acetylglucosamine kinase</span>

In enzymology, a N-acetylglucosamine kinase is an enzyme that catalyzes the chemical reaction

<i>Bifidobacterium longum</i> Species of bacterium

Bifidobacterium longum is a Gram-positive, catalase-negative, rod-shaped bacterium present in the human gastrointestinal tract and one of the 32 species that belong to the genus Bifidobacterium. It is a microaerotolerant anaerobe and considered to be one of the earliest colonizers of the gastrointestinal tract of infants. When grown on general anaerobic medium, B. longum forms white, glossy colonies with a convex shape. B. longum is one of the most common bifidobacteria present in the gastrointestinal tracts of both children and adults. B. longum is non-pathogenic, is often added to food products, and its production of lactic acid is believed to prevent growth of pathogenic organisms.

Endo-α-N-acetylgalactosaminidase (EC 3.2.1.97, endo-α-acetylgalactosaminidase, endo-α-N-acetyl-D-galactosaminidase, mucinaminylserine mucinaminidase, D-galactosyl-3-(N-acetyl-α-D-galactosaminyl)-L-serine mucinaminohydrolase, endo-α-GalNAc-ase, D-galactosyl-N-acetyl-α-D-galactosamine D-galactosyl-N-acetyl-galactosaminohydrolase) is an enzyme with systematic name glycopeptide-D-galactosyl-N-acetyl-α-D-galactosamine D-galactosyl-N-acetyl-galactosaminohydrolase. This enzyme catalyses the following chemical reaction

Lacto-N-biosidase (EC 3.2.1.140) is an enzyme with systematic name oligosaccharide lacto-N-biosylhydrolase. This enzyme catalyses the following chemical reaction

Lacto-<i>N</i>-tetraose Chemical compound

Lacto-N-tetraose is a complex sugar found in human milk. It is one of the few characterized human milk oligosaccharides (HMOs) and is enzymatically synthesized from the substrate lactose. It is biologically relevant in the early development of the infant gut flora.

References

  1. Nishimoto M, Kitaoka M (October 2007). "Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum". Applied and Environmental Microbiology. 73 (20): 6444–9. doi:10.1128/aem.01425-07. PMC   2075035 . PMID   17720833.