Probability current

Last updated

In quantum mechanics, the probability current (sometimes called probability flux ) is a mathematical quantity describing the flow of probability. Specifically, if one thinks of probability as a heterogeneous fluid, then the probability current is the rate of flow of this fluid. It is a real vector that changes with space and time. Probability currents are analogous to mass currents in hydrodynamics and electric currents in electromagnetism. As in those fields, the probability current (i.e. the probability current density) is related to the probability density function via a continuity equation. The probability current is invariant under gauge transformation.

Contents

The concept of probability current is also used outside of quantum mechanics, when dealing with probability density functions that change over time, for instance in Brownian motion and the Fokker–Planck equation. [1]

Definition (non-relativistic 3-current)

Free spin-0 particle

In non-relativistic quantum mechanics, the probability current j of the wave function Ψ of a particle of mass m in one dimension is defined as [2]

where

Note that the probability current is proportional to a Wronskian

In three dimensions, this generalizes to

where denotes the del or gradient operator. This can be simplified in terms of the kinetic momentum operator,

to obtain

These definitions use the position basis (i.e. for a wavefunction in position space), but momentum space is possible.

Spin-0 particle in an electromagnetic field

The above definition should be modified for a system in an external electromagnetic field. In SI units, a charged particle of mass m and electric charge q includes a term due to the interaction with the electromagnetic field; [3]

where A = A(r, t) is the magnetic vector potential. The term qA has dimensions of momentum. Note that used here is the canonical momentum and is not gauge invariant, unlike the kinetic momentum operator .

In Gaussian units:

where c is the speed of light.

Spin-s particle in an electromagnetic field

If the particle has spin, it has a corresponding magnetic moment, so an extra term needs to be added incorporating the spin interaction with the electromagnetic field.

According to Landau-Lifschitz's Course of Theoretical Physics the electric current density is in Gaussian units: [4]

And in SI units:

Hence the probability current (density) is in SI units:

where S is the spin vector of the particle with corresponding spin magnetic moment μS and spin quantum number s.

It is doubtful if this formula is vaild for particles with an interior structure.[ citation needed ] The neutron has zero charge but non-zero magnetic moment, so would be impossible (except would also be zero in this case). For composite particles with a non-zero charge – like the proton which has spin quantum number s=1/2 and µS= 2.7927·µN or the deuteron (H-2 nucleus) which has s=1 and µS=0.8574·µN [5] – it is mathematically possible but doubtful.

Connection with classical mechanics

The wave function can also be written in the complex exponential (polar) form: [6]

where R, S are real functions of r and t.

Written this way, the probability density is

and the probability current is:

The exponentials and RR terms cancel:

Finally, combining and cancelling the constants, and replacing R2 with ρ,

Hence, the spatial variation of the phase of a wavefunction is said to characterize the probability flux of the wavefunction. If we take the familiar formula for the mass flux in hydrodynamics:


where is the mass density of the fluid and v is its velocity (also the group velocity of the wave). In the classical limit, we can associate the velocity with which is the same as equating S with the classical momentum p = mv however, it does not represent a physical velocity or momentum at a point since simultaneous measurement of position and velocity violates uncertainty principle. This interpretation fits with Hamilton–Jacobi theory, in which

in Cartesian coordinates is given by S, where S is Hamilton's principal function.

The de Broglie-Bohm theory equates the velocity with in general (not only in the classical limit) so it is always well defined. It is an interpretation of quantum mechanics.

Motivation

Continuity equation for quantum mechanics

The definition of probability current and Schrödinger's equation can be used to derive the continuity equation, which has exactly the same forms as those for hydrodynamics and electromagnetism. [7]

For some wave function Ψ, let:

be the probability density (probability per unit volume, * denotes complex conjugate). Then,


where V is any volume and S is the boundary of V.

This is the conservation law for probability in quantum mechanics. The integral form is stated as:

where

is the probability current or probability flux (flow per unit area). Here, equating the terms inside the integral gives the continuity equation for probability:

and the integral equation can also be restated using the divergence theorem as:


OiintLaTeX.svg.


In particular, if Ψ is a wavefunction describing a single particle, the integral in the first term of the preceding equation, sans time derivative, is the probability of obtaining a value within V when the position of the particle is measured. The second term is then the rate at which probability is flowing out of the volume V. Altogether the equation states that the time derivative of the probability of the particle being measured in V is equal to the rate at which probability flows into V.

By taking the limit of volume integral to include all regions of space, a well-behaved wavefunction that goes to zero at infinities in the surface integral term implies that the time derivative of total probability is zero ie. the normalization condition is conserved. [8] This result is in agreement with the unitary nature of time evolution operators which preserve length of the vector by definition.

Transmission and reflection through potentials

In regions where a step potential or potential barrier occurs, the probability current is related to the transmission and reflection coefficients, respectively T and R; they measure the extent the particles reflect from the potential barrier or are transmitted through it. Both satisfy:

where T and R can be defined by:

where jinc, jref, jtrans are the incident, reflected and transmitted probability currents respectively, and the vertical bars indicate the magnitudes of the current vectors. The relation between T and R can be obtained from probability conservation:

In terms of a unit vector n normal to the barrier, these are equivalently:

where the absolute values are required to prevent T and R being negative.

Examples

Plane wave

For a plane wave propagating in space:

the probability density is constant everywhere;

(that is, plane waves are stationary states) but the probability current is nonzero – the square of the absolute amplitude of the wave times the particle's speed;

illustrating that the particle may be in motion even if its spatial probability density has no explicit time dependence.

Particle in a box

For a particle in a box, in one spatial dimension and of length L, confined to the region , the energy eigenstates are

and zero elsewhere. The associated probability currents are

since

Discrete definition

For a particle in one dimension on we have the Hamiltonian where is the discrete Laplacian, with S being the right shift operator on Then the probability current is defined as with v the velocity operator, equal to and X is the position operator on Since V is usually a multiplication operator on we get to safely write

As a result, we find:

Related Research Articles

In quantum mechanics, the Hamiltonian of a system is an operator corresponding to the total energy of that system, including both kinetic energy and potential energy. Its spectrum, the system's energy spectrum or its set of energy eigenvalues, is the set of possible outcomes obtainable from a measurement of the system's total energy. Due to its close relation to the energy spectrum and time-evolution of a system, it is of fundamental importance in most formulations of quantum theory.

<span class="mw-page-title-main">Schrödinger equation</span> Description of a quantum-mechanical system

The Schrödinger equation is a linear partial differential equation that governs the wave function of a quantum-mechanical system. Its discovery was a significant landmark in the development of quantum mechanics. It is named after Erwin Schrödinger, who postulated the equation in 1925 and published it in 1926, forming the basis for the work that resulted in his Nobel Prize in Physics in 1933.

The Klein–Gordon equation is a relativistic wave equation, related to the Schrödinger equation. It is second-order in space and time and manifestly Lorentz-covariant. It is a quantized version of the relativistic energy–momentum relation . Its solutions include a quantum scalar or pseudoscalar field, a field whose quanta are spinless particles. Its theoretical relevance is similar to that of the Dirac equation. Electromagnetic interactions can be incorporated, forming the topic of scalar electrodynamics, but because common spinless particles like the pions are unstable and also experience the strong interaction the practical utility is limited.

In physics, an operator is a function over a space of physical states onto another space of physical states. The simplest example of the utility of operators is the study of symmetry. Because of this, they are useful tools in classical mechanics. Operators are even more important in quantum mechanics, where they form an intrinsic part of the formulation of the theory.

<span class="mw-page-title-main">Bloch's theorem</span> Fundamental theorem in condensed matter physics

In condensed matter physics, Bloch's theorem states that solutions to the Schrödinger equation in a periodic potential can be expressed as plane waves modulated by periodic functions. The theorem is named after the physicist Felix Bloch, who discovered the theorem in 1929. Mathematically, they are written

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

<span class="mw-page-title-main">Pilot wave theory</span> One interpretation of quantum mechanics

In theoretical physics, the pilot wave theory, also known as Bohmian mechanics, was the first known example of a hidden-variable theory, presented by Louis de Broglie in 1927. Its more modern version, the de Broglie–Bohm theory, interprets quantum mechanics as a deterministic theory, avoiding troublesome notions such as wave–particle duality, instantaneous wave function collapse, and the paradox of Schrödinger's cat. To solve these problems, the theory is inherently nonlocal.

In physics, a free particle is a particle that, in some sense, is not bound by an external force, or equivalently not in a region where its potential energy varies. In classical physics, this means the particle is present in a "field-free" space. In quantum mechanics, it means the particle is in a region of uniform potential, usually set to zero in the region of interest since the potential can be arbitrarily set to zero at any point in space.

In differential geometry, the four-gradient is the four-vector analogue of the gradient from vector calculus.

The Schrödinger–Newton equation, sometimes referred to as the Newton–Schrödinger or Schrödinger–Poisson equation, is a nonlinear modification of the Schrödinger equation with a Newtonian gravitational potential, where the gravitational potential emerges from the treatment of the wave function as a mass density, including a term that represents interaction of a particle with its own gravitational field. The inclusion of a self-interaction term represents a fundamental alteration of quantum mechanics. It can be written either as a single integro-differential equation or as a coupled system of a Schrödinger and a Poisson equation. In the latter case it is also referred to in the plural form.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

The theoretical and experimental justification for the Schrödinger equation motivates the discovery of the Schrödinger equation, the equation that describes the dynamics of nonrelativistic particles. The motivation uses photons, which are relativistic particles with dynamics described by Maxwell's equations, as an analogue for all types of particles.

The Gross–Pitaevskii equation describes the ground state of a quantum system of identical bosons using the Hartree–Fock approximation and the pseudopotential interaction model.

The quantum potential or quantum potentiality is a central concept of the de Broglie–Bohm formulation of quantum mechanics, introduced by David Bohm in 1952.

In quantum mechanics, the Pauli equation or Schrödinger–Pauli equation is the formulation of the Schrödinger equation for spin-½ particles, which takes into account the interaction of the particle's spin with an external electromagnetic field. It is the non-relativistic limit of the Dirac equation and can be used where particles are moving at speeds much less than the speed of light, so that relativistic effects can be neglected. It was formulated by Wolfgang Pauli in 1927.

In quantum mechanics and quantum field theory, a Schrödinger field, named after Erwin Schrödinger, is a quantum field which obeys the Schrödinger equation. While any situation described by a Schrödinger field can also be described by a many-body Schrödinger equation for identical particles, the field theory is more suitable for situations where the particle number changes.

In theoretical physics, the Madelung equations, or the equations of quantum hydrodynamics, are Erwin Madelung's equivalent alternative formulation of the Schrödinger equation, written in terms of hydrodynamical variables, similar to the Navier–Stokes equations of fluid dynamics. The derivation of the Madelung equations is similar to the de Broglie–Bohm formulation, which represents the Schrödinger equation as a quantum Hamilton–Jacobi equation.

In quantum mechanics, energy is defined in terms of the energy operator, acting on the wave function of the system as a consequence of time translation symmetry.

This is a glossary for the terminology often encountered in undergraduate quantum mechanics courses.

In mathematical physics, the Gordon decomposition of the Dirac current is a splitting of the charge or particle-number current into a part that arises from the motion of the center of mass of the particles and a part that arises from gradients of the spin density. It makes explicit use of the Dirac equation and so it applies only to "on-shell" solutions of the Dirac equation.

References

  1. Paul, Wolfgang; Baschnagel, Jörg (1999). Stochastic Processes : From Physics to Finance. Berlin: Springer. p. 84. ISBN   3-540-66560-9.
  2. Quantum Field Theory, D. McMahon, Mc Graw Hill (USA), 2008, ISBN   978-0-07-154382-8
  3. Quantum mechanics, Ballentine, Leslie E, Vol. 280, Englewood Cliffs: Prentice Hall, 1990.
  4. see page 473, equation 115.4, L.D. Landau, E.M. Lifschitz. "COURSE OF THEORETICAL PHYSICS Vol. 3 – Quantum Mechanics" (PDF). ia803206.us.archive.org (3rd ed.). Retrieved 29 April 2023.
  5. "Spin Properties of Nuclei". www2.chemistry.msu.edu. Retrieved 29 April 2023.
  6. Analytical Mechanics, L.N. Hand, J.D. Finch, Cambridge University Press, 2008, ISBN   978-0-521-57572-0
  7. Quantum Mechanics, E. Abers, Pearson Ed., Addison Wesley, Prentice Hall Inc, 2004, ISBN   978-0-13-146100-0
  8. Sakurai, Jun John; Napolitano, Jim (2021). Modern quantum mechanics (3rd ed.). Cambridge: Cambridge University Press. ISBN   978-1-108-47322-4.

Further reading